
How-to:
Secure Boot TQMa93xx
16.04.2025

The host PC used in this guide uses Linux (Ubuntu 22.04) as operating system.

ATTENTION: Fuses (One Time Programmable) are set in this How-to, this
process is irreversible. It is therefore strongly recommended to use a
development pattern for this guide.

1. Procedure
This guide explains how a chain of trust can be established from the boot loader via the Linux kernel to a
root partition with dm-verity.
The following table provides a simplified description of the steps involved in creating the chain of trust
and verification during the boot process:

Creation Execution

U-Boot
The bootloader U-Boot is signed with the private
key of an asymmetric key pair. The signature and
the public key are integrated into the U-Boot
image. A hash of the public key is written to the
fuses of the SoC.

The Boot ROM loads the U-Boot image and
extracts the signature block with the signature and
the public key. Using these two components and
the hash of the public key from the fuses, the U-
Boot image can be verified.

FIT-Image
The hash of the FIT image is signed with the
private key of an asymmetric key pair. This
signature is attached to the FIT image. The public
key is written to the U-Boot devicetree.

U-Boot verifies the FIT image during loading using
the signature and the public key.

Root file system
Creation of a root partition with veritysetup. This
creates a root hash of all files in the file system,
which must be stored in Initramfs.

Creation of a device mapper from the root partition
by specifying the root hash in Initramfs. Mount of
the device mapper as a root file system.
Specifying the root hash guarantees that the files
in the root partition are unchanged.

2. Preparation
The following projects are required to create a signed boot stream for TQMa93xx:

• imx-mkimage: https://github.com/nxp-imx/imx-mkimage (required)

• NXP Code Signing Tool 3.4.x (with NXP Account):
https://www.nxp.com/webapp/Download?colCode=IMX_CST_TOOL_NEW (required)

• TQ Yocto-Workspace: https://github.com/tq-systems/ci-meta-tq (recommended)

The bootstream for TQMa93xx consists of several artifacts. To obtain all these artifacts from the same
source, it is recommended to use the TQ Yocto workspace ci-meta-tq. The instructions included there
can be followed to build a complete image (tq-image-weston-debug or tq-image-generic-debug) for
one of the following TQMa93xx-based devices:

• tqma93xx-mba91xxca.conf

• tqma93xx-mba93xxca.conf

• tqma93xxla-mba93xxla.conf

ATTENTION: To create U-Boot with secure boot functionality (AHAB), the
following line must be added to local.conf:

DISTRO_FEATURES:append = " secure"

Next, the boot stream must be recreated:

$ bitbake imx-boot

The TQ Yocto workspace can also be used to create an image of the complete chain of trust presented
here. The settings required for this are described in section 5.2 .
The sources for the Linux kernel and U-Boot are optional but recommended. They can be downloaded
from Github:
Linux: https://github.com/tq-systems/linux-tqmaxx/tree/TQMa-fslc-6.6-2.0.x-imx
U-Boot: https://github.com/tq-systems/u-boot-tqmaxx/tree/TQM-lf_v2023.04

Linux and U-Boot should already be compiled for a variant of TQMa93xx in preparation.

https://github.com/nxp-imx/imx-mkimage
https://www.nxp.com/webapp/Download?colCode=IMX_CST_TOOL_NEW
https://github.com/tq-systems/ci-meta-tq
https://github.com/tq-systems/linux-tqmaxx/tree/TQMa-fslc-6.6-2.0.x-imx
https://github.com/tq-systems/u-boot-tqmaxx/tree/TQM-lf_v2023.04

3. U-Boot
3.1 Generating keys
Signing and verification of the boot stream are carried out using a public key infrastructure (PKI). If not
already available, the Code Signing Tool can be used to create a suitable PKI. The CST 3.4.x is a tar.gz
archive that only needs to be unpacked. No further installation is necessary. The following steps can be
used to generate the sample keys for this guide:

 ATTENTION: Paths are relative to the folder extracted from the archive.

1. Enter the serial number of the first certificate in keys/serial (file must be created):

12345678

2. Enter the passphrase twice in keys/key_pass.txt (file must be created):

my_passphrase
my_passphrase

3. Create PKI tree:
$ keys/ahab_pki_tree.sh -existing-ca n -kt ecc -kl p521 -da sha512 -duration 10
-srk-ca n

For an explanation of the options, please refer to the User Guide contained in the CST (in the docs
subfolder) or the --help option of the above script.

Alternatively, the script can also be called without options and configured in interactive mode.
The script generates keys in keys/ and certificates in crts/.

4. Create SRK table and SRK hash table:
$ linux64/bin/srktool -a -s sha512 -d sha256 -t SRK_1_2_3_4_table.bin \
-e SRK_1_2_3_4_fuse.bin -f 1 -c
crts/SRK1_sha512_secp521r1_v3_usr_crt.pem,crts/SRK2_sha512_secp521r1_v3_usr_crt.
pem,crts/SRK3_sha512_secp521r1_v3_usr_crt.pem,crts/SRK4_sha512_secp521r1_v3_usr_
crt.pem

5. Write SRK hash table in fuses:

ATTENTION: This step is only possible once and is irreversible. The following
values are only examples and must be replaced by your own values.

a. Display hashes:
$ hexdump -e '/4 "0x"' -e '/4 "%X""\n"' SRK_1_2_3_4_fuse.bin
0x00000000
0x11111111
0x22222222
0x33333333
0x44444444
0x55555555
0x66666666
0x77777777

b. Write hashes in fuses (TQMa93xx U-Boot):
=> fuse prog 16 0 0x00000000
=> fuse prog 16 1 0x11111111
=> fuse prog 16 2 0x22222222
=> fuse prog 16 3 0x33333333
=> fuse prog 16 4 0x44444444
=> fuse prog 16 5 0x55555555
=> fuse prog 16 6 0x66666666
=> fuse prog 16 7 0x77777777

3.2 Creating a signed boot stream

3.2.1 U-Boot Proper and ATF
1. Copy the required files (successful build of a TQ image, see above, or the U-Boot sources is

assumed):
a. ARM Trusted Firmware: ${DEPLOY_DIR_IMAGE}/bl31-imx93.bin, rename to bl31.bin
b. U-Boot Proper:

${DEPLOY_DIR_IMAGE}/u-boot.bin

This file is a link, so copy it with cp –-dereference or display and copy the original file
with ls –-long

or
from self-compiled U-Boot sources

These files must be copied to imx-mkimage/iMX9/. imx-mkimage can be obtained from the
Github repository mentioned above, no installation is necessary.

2. Build container with U-Boot Proper and ATF (execute in folder imx-mkimage):

$ make SOC=iMX9 REV=A1 u-boot-atf-container.img
include autobuild.mak
…
CST: CONTAINER 0 offset: 0x0
CST: CONTAINER 0: Signature Block: offset is at 0x110
 Offsets = 0x0 0x110
DONE.
Note: Please copy image to offset: IVT_OFFSET + IMAGE_OFFSET

ATTENTION: The offsets for the container and signature block are required in
the next step.

The artifact imx-mkimage/iMX9/u-boot-atf-container.img must then be copied to the CST
folder unpacked in step "3.1 Generating keys".

3. Transfer offset of container and signature block to Command Sequence File (CSF):

[Header]
Target = AHAB
Version = 1.0

[Install SRK]
File = "SRK_1_2_3_4_table.bin"
Source = "crts/SRK1_sha512_secp521r1_v3_usr_crt.pem"
Source index = 0
Source set = OEM
Revocations = 0x0

[Authenticate Data]
File = "u-boot-atf-container.img"
Offsets = 0x0 0x110

CSF based on: https://github.com/nxp-imx/uboot-
imx/blob/lf_v2024.04/doc/imx/ahab/csf_examples/csf_uboot_atf.txt

The CSF is also stored in the CST folder with the name csf_uboot_atf.txt that was unpacked
in step "3.1 Generating keys".

4. Sign container (path relative to the CST folder):
$ linux64/bin/cst -i csf_uboot_atf.txt -o signed-u-boot-atf-container.img

The signed container must then be copied back to imx-mkimage/iMX9/u-boot-atf-
container.img. Note the renaming to u-boot-atf-container.img.

https://github.com/nxp-imx/uboot-imx/blob/lf_v2024.04/doc/imx/ahab/csf_examples/csf_uboot_atf.txt
https://github.com/nxp-imx/uboot-imx/blob/lf_v2024.04/doc/imx/ahab/csf_examples/csf_uboot_atf.txt

3.2.2 Complete bootstream

1. Copy the required files (successful build of a TQ image, see above, or of the U-Boot sources is
assumed):

a. Edgelock Secure Enclave Firmware: ${DEPLOY_DIR_IMAGE}/mx93a1-ahab-
container.img

b. RAM Firmware: ${DEPLOY_DIR_IMAGE}/lpddr4*.bin
c. U-Boot SPL:

${DEPLOY_DIR_IMAGE}/u-boot-spl.bin

This file is a link, so copy it with cp –-dereference or display and copy the original file
with ls –-long

or
from self-compiled U-Boot sources

d. Signed container with U-Boot Proper and ATF from step „3.2.1 U-Boot Proper and ATF“
These files must also be copied to imx-mkimage/iMX9/.

2. Build bootstream

$ make -j8 SOC=iMX9 REV=A1 flash_singleboot
include autobuild.mak
…
CST: CONTAINER 0 offset: 0x400
CST: CONTAINER 0: Signature Block: offset is at 0x490
 Offsets = 0x400 0x490
DONE.
Note: Please copy image to offset: IVT_OFFSET + IMAGE_OFFSET
append u-boot-atf-container.img at 379 KB, psize=1024
1145+0 records in
1145+0 records out
1172480 bytes (1.2 MB, 1.1 MiB) copied, 0.00266906 s, 439 MB/s

ATTENTION: The offsets for the container and signature block are required in
the next step.

The artifact imx-mkimage/iMX9/flash.bin must then be copied to the CST folder unpacked in
step "3.1 Generating keys".

3. Transfer offset of container and signature block to Command Sequence File (CSF):
[Header]
Target = AHAB
Version = 1.0

[Install SRK]
File = "SRK_1_2_3_4_table.bin"
Source = "crts/SRK1_sha512_secp521r1_v3_usr_crt.pem"
Source index = 0
Source set = OEM
Revocations = 0x0

[Authenticate Data]
File = "flash.bin"
Offsets = 0x400 0x490

CSF based on: https://github.com/nxp-imx/uboot-
imx/blob/lf_v2024.04/doc/imx/ahab/csf_examples/csf_boot_image.txt
The CSF is stored in the CST folder with the name csf_boot_image.txt unpacked in step "3.1
Generating keys".

4. Sign the bootstream
linux64/bin/cst -i csf_boot_image.txt -o signed-flash.bin

The steps for replacing the boot stream can be found in the BSP layer (https://github.com/tq-
systems/meta-tq) under meta-tq/doc.

3.3 Verification
To check if the signed boot stream is valid, use the ahab_status command in U-Boot:

=> ahab_status
Lifecycle: 0x00000008, OEM Open

 No Events Found!

If an event is found, the boot stream is invalid and would not be able to boot on a locked device.

https://github.com/nxp-imx/uboot-imx/blob/lf_v2024.04/doc/imx/ahab/csf_examples/csf_boot_image.txt
https://github.com/nxp-imx/uboot-imx/blob/lf_v2024.04/doc/imx/ahab/csf_examples/csf_boot_image.txt

For falsification, an unsigned bootstream can be booted and then ahab_status can be called:

=> ahab_status
Lifecycle: 0x00000008, OEM Open

 0x0287fad6
 IPC = MU APD (0x2)
 CMD = ELE_OEM_CNTN_AUTH_REQ (0x87)
 IND = ELE_BAD_KEY_HASH_FAILURE_IND (0xFA)
 STA = ELE_SUCCESS_IND (0xD6)

 0x0287fad6
 IPC = MU APD (0x2)
 CMD = ELE_OEM_CNTN_AUTH_REQ (0x87)
 IND = ELE_BAD_KEY_HASH_FAILURE_IND (0xFA)
 STA = ELE_SUCCESS_IND (0xD6)

3.4 Lock the device

ATTENTION: This step is irreversible and should only be carried out if
necessary. If the configuration is incorrect, this step will result in an unusable
device.

The device can be locked in the U-Boot with the command ahab_close. This means that only valid boot
streams verified by the Boot ROM will boot. The following status is displayed after rebooting:
=> ahab_status
Lifecycle: 0x00000020, OEM Closed

 No Events Found!

4. FIT-Image

ATTENTION: Path information is relative to a new, empty folder, e.g.
fit_image_work, or the kernel sources, if self-compiled. Hereafter referred to
as the working directory.

4.1 Generating a key pair
 An asymmetric key pair is used to sign the FIT image. Such a pair can be generated with OpenSSL:
$ openssl genpkey -algorithm RSA -out dev.key -pkeyopt rsa_keygen_bits:2048
$ openssl req -batch -new -x509 -key dev.key -out dev.crt

4.2 Create image tree source
Create image tree source sign.its for the FIT image.

/dts-v1/;

/ {
 description = "Kernel fitImage for TQMa93xx";
 #address-cells = <1>;

 images {
 kernel-1 {
 description = "Linux kernel";
 data = /incbin/("Image");
 type = "kernel";
 arch = "arm64";
 os = "linux";
 compression = "gzip";
 load = <0x90000000>;
 entry = <0x90000000>;
 hash-1 {
 algo = "sha256";
 };
 };

 fdt-1 {
 description = "Flattened Device Tree blob";
 data = /incbin/("<path/to/Devicetree.dtb>");
 type = "flat_dt";
 arch = "arm64";
 compression = "none";
 load = <0x97000000>;
 hash-1 {
 algo = "sha256";
 };

 };
 };

 configurations {
 default = "conf-1";
 conf-1 {
 description = "Linux kernel, FDT blob";

 kernel = "kernel-1";
 fdt = "fdt-1";

 hash-1 {
 algo = "sha256";
 };

 signature-1 {
 algo = "sha256,rsa2048";
 key-name-hint = "dev";
 padding = "pkcs-1.5";
 sign-images = "kernel", "fdt";
 };
 };
 };
};

4.3 Creating a signed FIT image

Note: The devicetree binary for U-Boot is required for this step. Ready-made
devicetree binaries can be found in the Yocto workspace in the U-Boot build
directory. The path to the build directory can be displayed with bitbake
virtual/bootloader –e | grep ^B=.

1. Copy the required files into the working directory:

a. Rename U-Boot devicetree imx93-tqma9352-mba91xxca.dtb, imx93-tqma9352-
mba93xxca.dtb or imx93-tqma9352-mba93xxla.dtb, in pubkey.dtb:

From U-Boot build directory in Yocto workspace (path: bitbake virtual/bootloader –
e | grep ^B=)

or
from self-compiled U-Boot sources

b. Linux-Kernel:
${DEPLOY_DIR_IMAGE}/Image

This file is a link, so copy it with cp –-dereference or display and copy the original file
with ls –-long

or
from self-compiled Linux sources

c. Linux devicetree:
Depending on the variant ${DEPLOY_DIR_IMAGE}/imx93-tqma93…

This file is a link, so copy it with cp –-dereference or display and copy the original file
with ls –-long

or
from self-compiled Linux sources

d. The keys generated in step 4.1
e. The ITS file generated in step 4.2

2. Create FIT image with signature

$ mkimage -f sign.its -K pubkey.dtb -k . -r image.itb

The public key is written to the devicetree of the U-Boot. This key is used to verify the FIT image
signed above.

ATTENTION: To pack the U-Boot devicetree with the public key into the
signed bootstream from chapter 3.2, the steps from chapter 3.2 must be
repeated with a customized U-Boot Proper u-boot.bin. To do this, the
devcietree with the public key pubkey.dtb must be specified via the EXT_DTB
option when compiling the U-Boot:
make EXT_DTB=<Pfad/zu/pubkey.dtb>

4.4 Verification
In U-Boot with public keys, the signed FIT image image.itb can be booted with bootm after it has been
loaded from a suitable medium (TFTP, eMMC, SD).

When booting the FIT image, U-Boot returns the information Verifying Hash Integrity ...
sha256,rsa2048:dev+ OK with name, algorithm and length of the key generated in chapter 4.1 on the
console:
Loading kernel from FIT Image at 80400000 ...
 ...
 Verifying Hash Integrity ... sha256,rsa2048:dev+ OK
 ...
Loading ramdisk from FIT Image at 80400000 ...
 ...
 Verifying Hash Integrity ... sha256,rsa2048:dev+ OK
 ...
Loading fdt from FIT Image at 80400000 ...
 ...
 Verifying Hash Integrity ... sha256,rsa2048:dev+ OK
 ...

For falsification, another key pair can be generated as described in section 4.1 and used to sign the FIT
image. This FIT image cannot be booted without exchanging the key in the U-Boot Devicetree:
Loading kernel from FIT Image at 80400000 ...
 Using 'conf-1' configuration
 Verifying Hash Integrity ... sha256,rsa2048:test- error!
Verification failed for '<NULL>' hash node in 'conf-1' config node
Failed to verify required signature 'key-dev'
Bad Data Hash
ERROR: can't get kernel image!

5. Extend Chain of Trust: root partition
The previously established chain of trust verifies the origin of the U-Boot and Linux kernel. With the
mechanisms mentioned above, only the owner of the generated private key can sign his software and
boot it on the device. Further links can be added to the chain. The following section outlines how the root
partition can be protected against manipulation using dm-verity. For the real implementation, it is also
shown how the complete chain can be created with the TQ-BSP. A step-by-step guide to dm-verity
protection is omitted due to the complexity of the requirements.

5.1 Sketch: Verity Devicemapper

1. Generate Verity hashes:
veritysetup calculates the hash values and stores them at the end of the root partition. The
root partition can be a real file or a block device file (e.g. /dev/sdaX).

veritysetup \
 --data-block-size=1024 \
 --hash-block-size=4096 \
 --hash-offset=<Offset> \
 format \
 <Root-Partition.img> \
 <Root-Partition.img>

veritysetup outputs the following information (with correspondingly different values):

VERITY header information for data.img
UUID: e06ff4cb-6b56-4ad4-bd97-0104505a70a5
Hash type: 1
Data blocks: 204800
Data block size: 1024
Hash block size: 4096
Hash algorithm: sha256
Salt: 17328c48990b76fbb3e05d0ebfd236043674cf0d14c278bc875b42693621cc21
Root hash: a0e1a449d452f74d041706b955794c0041e3d8ad051068df6589e08485323698

The root hash is the sensitive value that needs to be protected. If this hash is compromised, e.g.
if it can be changed by an unauthorized person, then the protection of the integrity of the root
partition by dm-verity is worthless.

2. Integrate the root hash into the chain of trust
The root hash generated above is stored in the signed FIT image, which protects it against
manipulation. For this purpose, an initramfs is added to the FIT image in which the root hash is
stored in a file.

The images node of the ITS file from chapter 4.2 is extended by the following section, among
others:
ramdisk-1 {
 description = "dm-verity-image-initramfs";
 data = /incbin/("<path/to/Initramfs.cpio.gz>");
 type = "ramdisk";
 arch = "arm64";
 os = "linux";
 compression = "none";
 load = <0x98000000>;
 entry = <0x98000000>;
 hash-1 {
 algo = "sha256";
 };
};

3. Check the integrity of the root partition

The initramfs contains a suitable script that generates a device mapper from the root partition and
the root hash.
veritysetup \
 --data-block-size=${DATA_BLOCK_SIZE} \
 --hash-offset=${DATA_SIZE} \
 create rootfs \
 </dev/Root-Paritition> \
 </dev/Root-Paritition> \
 <Root Hash>

The device mapper is then mounted:
mount \
 -o ro \
 /dev/mapper/rootfs \
 /rootfs

The root filesystem is read-only. To switch to the actual root filesystem, use switch-root.

5.2 Automated creation with TQ-BSP
In principle, an image with a chain of trust from the boot loader to the root partition can be created
automatically with the TQ-BSP.
For TQMa93xx the following options have to be added to local.conf :

The DISTRO_FEATURE secure necessary config options for U-Boot and Kernel
DISTRO_FEATURES:append = " secure"
Name of the key used for signing the bootloader
IMX_HAB_KEY_NAME = "ahab"
Activates the signing of the FIT image in the build process
UBOOT_SIGN_ENABLE = "1"
This class contains the logic for creating a protected root partition
IMAGE_CLASSES += "dm-verity-img"
Name of the initramfs image for dm-verity handling
INITRAMFS_IMAGE = "dm-verity-image-initramfs"
Initramfs is stored as a separate artifact in the image
INITRAMFS_IMAGE_BUNDLE = "0"
Store FIT image with initramfs in boot partition
IMAGE_BOOT_FILES:append = " fitImage-${INITRAMFS_IMAGE}-${MACHINE}-
${MACHINE};fitImage" # Image to be protected with dm-verity
Alternative: tq-image-weston-debug
DM_VERITY_IMAGE = "tq-image-generic-debug"
Type oft he above image
DM_VERITY_IMAGE_TYPE = "ext4"

ATTENTION: The exact options may change in future versions of the BSP.
The latest information can be found in the BSP layer documentation
(https://github.com/tq-systems/meta-tq) under meta-tq/doc.

The complete image is created with bitbake tq-image-generic-debug and can then be written to an
SD card, for example.

5.3 Verification
In Linux, mount -a can be used to check if the Verity Devicemapper is mounted as the root filesystem:
mount
...
/dev/mapper/rootfs on / type ext4 (ro,relatime)
...

In addition, the entire root file system is read-only in this case:
touch test
touch: cannot touch 'test': Read-only file system

For falsification, the root file system can be modified offline and the device rebooted. The modification
causes a different root hash and the boot process is aborted:
device-mapper: verity: 179:98: data block 1 is corrupted

More information about the TQMa93xx can be found in the TQ Support Wiki: https://support.tq-
group.com/en/arm/modules#nxp_imx_9_series

TQ-Systems GmbH

Mühlstraße 2 l Gut Delling l 82229 Seefeld
Info@TQ-Group | TQ-Group

https://support.tq-group.com/en/arm/modules#nxp_imx_9_series
https://support.tq-group.com/en/arm/modules#nxp_imx_9_series
mailto:info@tq-group.com
https://www.tq-group.com/

	1. Procedure
	2. Preparation
	3. U-Boot
	3.1 Generating keys
	3.2 Creating a signed boot stream
	3.2.1 U-Boot Proper and ATF
	3.2.2 Complete bootstream

	3.3 Verification
	3.4 Lock the device

	4. FIT-Image
	4.1 Generating a key pair
	4.2 Create image tree source
	4.3 Creating a signed FIT image
	4.4 Verification

	5. Extend Chain of Trust: root partition
	5.1 Sketch: Verity Devicemapper
	5.2 Automated creation with TQ-BSP
	5.3 Verification

