

TQMa6x & TQMa6xP User's Manual

TQMa6x & TQMa6xP UM 0404

09.01.2026

TABLE OF CONTENTS

1.	ABOUT THIS MANUAL.....	1
1.1	Copyright and license expenses.....	1
1.2	Registered trademarks.....	1
1.3	Disclaimer	1
1.4	Intended Use	1
1.5	Imprint	2
1.6	Tips on safety.....	2
1.7	Symbols and typographic conventions	2
1.8	Handling and ESD tips	2
1.9	Naming of signals.....	3
1.10	Further applicable documents / presumed knowledge	3
2.	BRIEF DESCRIPTION	4
2.1	Key functions and characteristics.....	4
3.	ELECTRONICS.....	5
3.1	System overview	5
3.1.1	System architecture / block diagram.....	5
3.1.2	Functionality.....	6
3.2	System components.....	7
3.2.1	i.MX6.....	7
3.2.1.1	i.MX6 derivatives	7
3.2.1.2	eFUSES	7
3.2.1.3	i.MX6 errata	7
3.2.1.4	Boot modes.....	8
3.2.1.5	Boot configuration.....	9
3.2.1.6	Boot interfaces	10
3.2.1.7	Boot device eMMC.....	10
3.2.1.8	Boot device SPI NOR flash.....	11
3.2.1.9	Boot device SD card.....	12
3.2.2	Memory	13
3.2.2.1	DDR3L SDRAM.....	13
3.2.2.2	eMMC NAND flash.....	14
3.2.2.3	SPI NOR flash.....	15
3.2.2.4	EEPROM	16
3.2.3	i.MX6 RTC	17
3.2.4	Temperature sensor	17
3.2.5	Interfaces	18
3.2.5.1	Overview	18
3.2.5.2	AUDMUX.....	19
3.2.5.3	CCM	19
3.2.5.4	ECSPI.....	19
3.2.5.5	ENET.....	20
3.2.5.6	FLEXCAN	22
3.2.5.7	GPIO.....	22
3.2.5.8	HDMI	23
3.2.5.9	I ² C	23
3.2.5.10	I ² C / ENET-Patch Variants	24
3.2.5.11	IPU.....	25
3.2.5.12	LDB.....	26
3.2.5.13	MIPI_CSI.....	27
3.2.5.14	MIPI_DSI	27
3.2.5.15	MLB	27
3.2.5.16	PCIe.....	28
3.2.5.17	PWM	28
3.2.5.18	SATA	28
3.2.5.19	SJC	29
3.2.5.20	S/PDIF.....	29
3.2.5.21	Tamper	29
3.2.5.22	UART	30
3.2.5.23	USB.....	31
3.2.5.24	uSDHC.....	31
3.2.5.25	Watchdog	32

3.2.5.26	XTAL	32
3.2.6	Reset.....	33
3.2.7	Power supply.....	34
3.2.7.1	Overview TQMa6x power supply	34
3.2.7.2	Voltage monitoring VCC5V	35
3.2.7.3	Power consumption TQMa6x.....	36
3.2.7.4	Power-Up sequence TQMa6x / carrier board	37
3.3	TQMa6x interface	37
3.3.1	Pin multiplexing	37
3.3.2	Pinout TQMa6x connectors.....	38
3.3.3	Pinout differences connector X2, TQMa6x revision 02xx / revision 04xx	42
4.	MECHANICS.....	43
4.1	Connectors	43
4.2	Dimensions	43
4.3	Component placement	45
4.4	Adaptation to the environment	46
4.5	Protection against external effects.....	46
4.6	Thermal management.....	46
4.7	Structural requirements	46
4.8	Notes of treatment.....	46
5.	SOFTWARE.....	47
6.	SAFETY REQUIREMENTS AND PROTECTIVE REGULATIONS.....	48
6.1	EMC.....	48
6.2	ESD.....	48
6.3	Operational safety and personal security.....	48
6.4	Cyber Security	48
6.5	Export Control and Sanctions Compliance	48
6.6	Warranty.....	49
6.7	Climatic and operational conditions	49
6.8	Shock and Vibration	50
6.9	Reliability and service life.....	50
6.10	Environmental protection	50
6.10.1	RoHS	50
6.10.2	WEEE®	50
6.10.3	REACH®	50
6.10.4	EuP	50
6.10.5	Statement on California Proposition 65.....	51
6.10.6	Battery.....	51
6.10.7	Packaging	51
6.10.8	Other entries.....	51
7.	APPENDIX	52
7.1	Acronyms and definitions.....	52
7.2	References	54

TABLE DIRECTORY

Table 1:	Terms and Conventions	2
Table 2:	Processor derivatives	7
Table 3:	Boot modes and BT_FUSE_SEL	8
Table 4:	General boot settings	9
Table 5:	Boot configuration eMMC at uSDHC3	10
Table 6:	uSDHC3 eMMC modes	10
Table 7:	Boot configuration SPI NOR flash at eCSPI1	11
Table 8:	Boot configuration SD card at uSDHC2	12
Table 9:	uSDHC2 SD card modes	12
Table 10:	i.MX6 SDRAM interface according to i.MX6 derivative	13
Table 11:	DDR3L SDRAM memory size options	13
Table 12:	DDR3L SDRAM address range	13
Table 13:	SPI NOR flash assembly options	15
Table 14:	EEPROM, TQMa6x-specific data	16
Table 15:	Temperature sensor	17
Table 16:	Internally used interfaces	18
Table 17:	Externally available interfaces	18
Table 18:	Signals AUD3	19
Table 19:	Signals CCM	19
Table 20:	Signals ECSPI1, ECSPI5	19
Table 21:	Signals RGMII	20
Table 22:	ENET-Patch variants	21
Table 23:	Signals FLEXCAN	22
Table 24:	Signals GPIO	22
Table 25:	Signals HDMI	23
Table 26:	Signals I ² C	23
Table 27:	I ² C address mapping	23
Table 28:	Signals DISP0	25
Table 29:	Signals LVDS0, LVDS1	26
Table 30:	Signals MIPI_CSI	27
Table 31:	Signals MIPI_DSI	27
Table 32:	Signals MLB	27
Table 33:	Signals PCIe	28
Table 34:	Signals PWM	28
Table 35:	Signals SATA	28
Table 36:	JTAG modes	29
Table 37:	Signals JTAG	29
Table 38:	Signals S/PDIF	29
Table 39:	Signal TAMPER	29
Table 40:	Signals UARTs	30
Table 41:	Signals USB_H1	31
Table 42:	Signals USB_OTG	31
Table 43:	Signals uSDHC2	31
Table 44:	Signal WDOG	32
Table 45:	Signals XTAL	32
Table 46:	Reset signals	33
Table 47:	Power consumption TQMa6x	36
Table 48:	Pinout connector X1	38
Table 49:	Pinout connector X2	40
Table 50:	Pinout connector X3	42
Table 51:	Pinout differences TQMa6x revision 02xx and TQMa6x revision 04xx	42
Table 52:	TQMa6x, connectors	43
Table 53:	Carrier board mating connectors	43
Table 54:	TQMa6x, heights	43
Table 55:	Labels on TQMa6x	45
Table 56:	Climate and operational conditions -25 °C to +85 °C	49
Table 57:	Climate and operational conditions -40 °C to +85 °C	49
Table 58:	Shock resistance	50
Table 59:	Vibration resistance	50
Table 60:	Acronyms	52
Table 61:	Further applicable documents	54

FIGURE DIRECTORY

Figure 1:	Block diagram TQMa6x.....	5
Figure 2:	Block diagram i.MX6.....	7
Figure 3:	Block diagram DDR3L SDRAM connection.....	13
Figure 4:	Block diagram eMMC NAND flash connection.....	14
Figure 5:	Block diagram SPI NOR flash connection.....	15
Figure 6:	Block diagram EEPROM interface.....	16
Figure 7:	Block diagram RTC	17
Figure 8:	Block diagram temperature sensor interface	17
Figure 9:	ENET-Patch Variant "A"	24
Figure 10:	ENET-Patch Variant "B"	24
Figure 11:	ENET-Patch Variant "C"	24
Figure 12:	Block diagram UART interfaces.....	30
Figure 13:	Block diagram Reset	33
Figure 14:	Block diagram power supply.....	34
Figure 15:	Block diagram PMIC signals	34
Figure 16:	Block diagram VCC5V monitoring	35
Figure 17:	Block diagram power supply carrier board.....	37
Figure 18:	TQMa6x dimensions, side view.....	43
Figure 19:	TQMa6x dimensions, top view	44
Figure 20:	TQMa6x dimensions, top view through TQMa6x.....	44
Figure 21:	TQMa6x, component placement top.....	45
Figure 22:	TQMa6x, component placement bottom.....	45

REVISION HISTORY

Rev.	Date	Name	Pos.	Modification
0203	10.02.2018	Petz		Initial document
0400	19.04.2018	Petz	All	Complete rework, DualPlus and QuadPlus CPUs added
0401	21.10.2018	Petz	All Table 10 3.2.7.4 3.2.5.23, 6.5, Figure 22 Table 58, Table 59	Formatting, links updated, Clocks corrected Warning updated Updated "Package temperature" replaced with "Case temperature" Case temperature DDR3L SDRAM changed to +95 °C
0402	29.04.2019	Petz	6.5	Added
0403	19.09.2019	Petz	1.9 Table 4 Footnote 4 Footnote 5 3.3.5 Table 53	Link to Yocto added CPU deriveate-dependent BOOT_CFG3[1:0] settings added Updated Added Chapter headline added "X2-" in column "Pin" added
0404	09.01.2026	Petz Kreuzer	1.4, 6.4, 6.5, 6.6, 6.10.5 1.9, 7.2 Table 14 Table 16 3.2.5.9 3.3.2 4.1 Figure 21 Table 54 4.6	Chapters added Links updated "EEPROM, component" removed "Current consumption RTC at pin LICELL" removed Clarified Chapters 3.3.2 to 3.3.4 merged Information about retention force added Updated Information added and clarified Statements rephrased

1. ABOUT THIS MANUAL

1.1 Copyright and license expenses

Copyright protected © 2026 by TQ-Systems GmbH.

This User's Manual may not be copied, reproduced, translated, changed or distributed, completely or partially in electronic, machine readable, or in any other form without the written consent of TQ-Systems GmbH.

The drivers and utilities for the components used as well as the BIOS are subject to the copyrights of the respective manufacturers. The licence conditions of the respective manufacturer are to be adhered to.

Bootloader-licence expenses are paid by TQ-Systems GmbH and are included in the price.

Licence expenses for the operating system and applications are not taken into consideration and must be calculated / declared separately.

1.2 Registered trademarks

TQ-Systems GmbH aims to adhere to copyrights of all graphics and texts used in all publications, and strives to use original or license-free graphics and texts.

All brand names and trademarks mentioned in this User's Manual, including those protected by a third party, unless specified otherwise in writing, are subjected to the specifications of the current copyright laws and the proprietary laws of the present registered proprietor without any limitation. One should conclude that brand and trademarks are rightly protected by a third party.

1.3 Disclaimer

TQ-Systems GmbH does not guarantee that the information in this User's Manual is up-to-date, correct, complete or of good quality. Nor does TQ-Systems GmbH assume guarantee for further usage of the information. Liability claims against TQ-Systems GmbH, referring to material or non-material related damages caused, due to usage or non-usage of the information given in this User's Manual, or due to usage of erroneous or incomplete information, are exempted, as long as there is no proven intentional or negligent fault of TQ-Systems GmbH.

TQ-Systems GmbH explicitly reserves the rights to change or add to the contents of this User's Manual or parts of it without special notification.

Important Notice:

Before using the Starterkit MBA6x or parts of the schematics of the MBA6x, you must evaluate it and determine if it is suitable for your intended application. You assume all risks and liability associated with such use. TQ-Systems GmbH makes no other warranties including, but not limited to, any implied warranty of merchantability or fitness for a particular purpose. Except where prohibited by law, TQ-Systems GmbH will not be liable for any indirect, special, incidental or consequential loss or damage arising from the usage of the Starterkit MBA6x or schematics used, regardless of the legal theory asserted.

1.4 Intended Use

TQ DEVICES, PRODUCTS AND ASSOCIATED SOFTWARE ARE NOT DESIGNED, MANUFACTURED OR INTENDED FOR USE OR RESALE FOR THE OPERATION IN NUCLEAR FACILITIES, AIRCRAFT OR OTHER TRANSPORTATION NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL SYSTEMS, LIFE SUPPORT MACHINES, WEAPONS SYSTEMS, OR ANY OTHER EQUIPMENT OR APPLICATION REQUIRING FAIL-SAFE PERFORMANCE OR IN WHICH THE FAILURE OF TQ PRODUCTS COULD LEAD TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE. (COLLECTIVELY, "HIGH RISK APPLICATIONS")

You understand and agree that your use of TQ products or devices as a component in your applications are solely at your own risk. To minimize the risks associated with your products, devices and applications, you should take appropriate operational and design related protective measures.

You are solely responsible for complying with all legal, regulatory, safety and security requirements relating to your products. You are responsible for ensuring that your systems (and any TQ hardware or software components incorporated into your systems or products) comply with all applicable requirements. Unless otherwise explicitly stated in our product related documentation, TQ devices are not designed with fault tolerance capabilities or features and therefore cannot be considered as being designed, manufactured or otherwise set up to be compliant for any implementation or resale as a device in high risk applications. All application and safety information in this document (including application descriptions, suggested safety precautions, recommended TQ products or any other materials) is for reference only. Only trained personnel in a suitable work area are permitted to handle and operate TQ products and devices. Please follow the general IT security guidelines applicable to the country or location in which you intend to use the equipment.

1.5 Imprint

TQ-Systems GmbH
Gut Delling, Mühlstraße 2
D-82229 Seefeld

Tel: +49 8153 9308-0
Fax: +49 8153 9308-4223
E-Mail: Info@TQ-Group
Web: TQ-Group

1.6 Tips on safety

Improper or incorrect handling of the product can substantially reduce its life span.

1.7 Symbols and typographic conventions

Table 1: Terms and Conventions

Symbol	Meaning
	This symbol represents the handling of electrostatic-sensitive modules and / or components. These components are often damaged / destroyed by the transmission of a voltage higher than about 50 V. A human body usually only experiences electrostatic discharges above approximately 3,000 V.
	This symbol indicates the possible use of voltages higher than 24 V. Please note the relevant statutory regulations in this regard. Non-compliance with these regulations can lead to serious damage to your health and may damage or destroy the component.
	This symbol indicates a possible source of danger. Ignoring the instructions described can cause health damage, or damage the hardware.
	This symbol represents important details or aspects for working with TQ-products.
Command	A font with fixed-width is used to denote commands, contents, file names, or menu items.

1.8 Handling and ESD tips

General handling of your TQ-products

	<p>The TQ-product may only be used and serviced by certified personnel who have taken note of the information, the safety regulations in this document and all related rules and regulations.</p> <p>A general rule is not to touch the TQ-product during operation. This is especially important when switching on, changing jumper settings or connecting other devices without ensuring beforehand that the power supply of the system has been switched off.</p> <p>Violation of this guideline may result in damage / destruction of the TQMa6x and be dangerous to your health.</p> <p>Improper handling of your TQ-product would render the guarantee invalid.</p>
---	---

Proper ESD handling

The electronic components of your TQ-product are sensitive to electrostatic discharge (ESD). Always wear antistatic clothing, use ESD-safe tools, packing materials etc., and operate your TQ-product in an ESD-safe environment. Especially when you switch modules on, change jumper settings, or connect other devices.

1.9 Naming of signals

A hash mark (#) at the end of the signal name indicates a low-active signal.

Example: RESET#

If a signal can switch between two functions and if this is noted in the name of the signal, the low-active function is marked with a hash mark and shown at the end.

Example: C / D#

If a signal has multiple functions, the individual functions are separated by slashes when they are important for the wiring.

The identification of the individual functions follows the above conventions.

Example: WE2# / OE#

1.10 Further applicable documents / presumed knowledge

- **Specifications and manual of the modules used:**

These documents describe the service, functionality and special characteristics of the module used (incl. BIOS).

- **Specifications of the components used:**

The manufacturer's specifications of the components used, for example CompactFlash cards, are to be taken note of. They contain, if applicable, additional information that must be taken note of for safe and reliable operation. These documents are stored at TQ-Systems GmbH.

- **Chip errata:**

It is the user's responsibility to make sure all errata published by the manufacturer of each component are taken note of. The manufacturer's advice should be followed.

- **Software behaviour:**

No warranty can be given, nor responsibility taken for any unexpected software behaviour due to deficient components.

- **General expertise:**

Expertise in electrical engineering / computer engineering is required for the installation and the use of the device.

The following documents are required to fully comprehend the following contents:

- MBa6x circuit diagram
- MBa6x User's Manual
- i.MX6 Data Sheets
- i.MX6 Reference Manuals
- U-Boot documentation: www.denx.de/wiki/U-Boot/Documentation
- PTXdist documentation: www.ptxdist.de
- Yocto documentation: www.yoctoproject.org/docs/
- TQ-Support Wiki: Support-Wiki TQMa6x

2. BRIEF DESCRIPTION

This User's Manual describes the hardware of the TQMa6x revision 04xx, and refers to some software settings.

A certain derivative of the TQMa6x does not necessarily provide all features described in this User's Manual.

Functional differences between Dual/Quad and DualPlus/QuadPlus are referred to in the relevant passages.

This User's Manual does also not replace the NXP i.MX6 Reference Manuals (4), (5), and (6).

The TQMa6x is a universal Minimodule based on the NXP ARM CPU MCIMX6 (i.MX6).

The Cortex®-A9 core of this i.MX6 is typically clocked with 800 MHz.

The TQMa6x extends the TQC product range and offers an outstanding computing performance.

A suitable i.MX6 derivative (Single, Dual, Quad core) can be chosen for each requirement.

2.1 Key functions and characteristics

The TQMa6x provides the following key functions and characteristics:

- NXP i.MX6 (Solo, DualLite, Dual, Quad, DualPlus, QuadPlus)
- Up to 2 Gbyte DDR3L SDRAM, 64 bit interface (except "Solo": 32 bit interface)
- Up to 8 Gbyte eMMC NAND flash
- Up to 128 Mbyte SPI NOR flash ¹
- 64 kbit EEPROM
- Temperature sensor
- NXP PMIC (Power Management Integrated Circuit)
- Extended temperature range
- Single 5 V power supply
- Hardware is backward compatible with TQMa6x revision 02xx

All essential i.MX6 pins are routed to the connectors.

There are therefore no restrictions for customers using the TQMa6x with respect to an integrated customised design.

1: It is not possible to boot from an SPI NOR flash bigger than 16 Mbyte.

3. ELECTRONICS

The information provided in this User's Manual is only valid in connection with the tailored boot loader, which is preinstalled on the TQMa6x, and the [BSP provided by TQ-Systems](#), see also chapter 5.

3.1 System overview

3.1.1 System architecture / block diagram

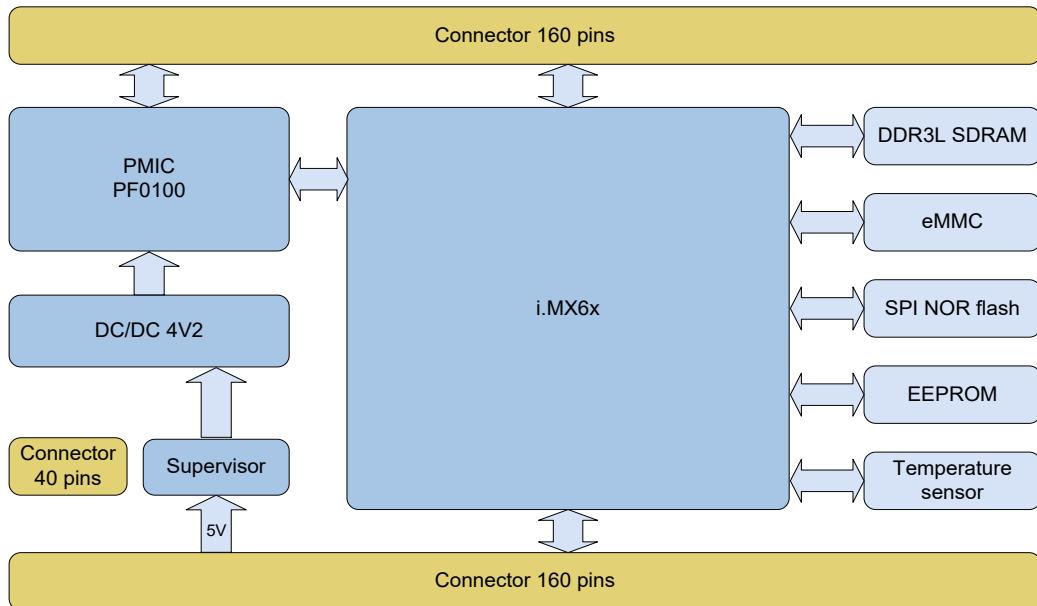


Figure 1: Block diagram TQMa6x

3.1.2 Functionality

The following key functions are implemented on the TQMa6x:

- i.MX6 CPU
- DDR3L SDRAM
- eMMC NAND flash
- SPI NOR flash
- EEPROM
- Temperature sensor
- Supervisor
- PMIC / DC/DC converter

The following interfaces are provided at the connectors of the TQMa6x:²

- 1 x Ethernet 10/100/1000 RGMII
- 1 x HDMI 1.4
- 1 x I²S
- 1 x JTAG
- 1 x MIPI CSI
- 1 x MIPI DSI
- 1 x MLB
- 1 x Parallel display RGB 24 bit
- 1 x PCIe 2.0 (1 Lane)
- 1 x SATA 3.0
- 1 x SD 8 Bit (SDIO / MMC / SD card)
- 1 x S/PDIF
- 2 x CAN
- 2 x General Purpose Clocks
- 2 x I²C
- 2 x LVDS display
- 2 x SPI
- 2 x USB 2.0 Hi-Speed (1 x USB Host, 1 x USB-OTG)
- 40 x GPIO
- 4 x PWM
- 4 x UART (with Handshake)

Further interfaces of the i.MX6 are also available as an alternative to the mentioned factory configuration, by adapting the pin configuration. These are amongst other:

- Camera Sensor Interfaces
- EIM bus
- Enhanced Periodic Interrupt Timer EPIT
- Enhanced Serial Audio Interface ESAI
- Ethernet 10/100 RMII
- General Purpose Media Interface GPMI
- General Purpose Timer GPT
- Keypad port
- MIPI HSI Host Controller
- More audio interfaces
- More I²C interfaces
- More SPI interfaces
- More UARTs
- One additional parallel display

2: Quantity of interfaces depends on the i.MX6 derivative.

3.2 System components

3.2.1 i.MX6

The following block diagram shows the main features of the i.MX6 processor family.

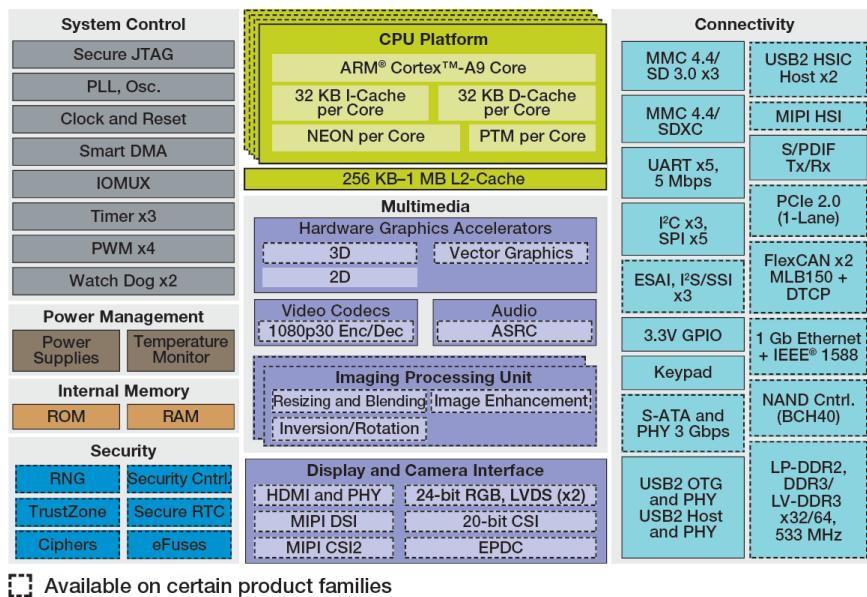


Figure 2: Block diagram i.MX6
(Source: [NXP](#))

3.2.1.1 i.MX6 derivatives

Depending on the TQMa6x derivative, one of the following i.MX6 derivatives is assembled:

Table 2: Processor derivatives

Description		Clock	CPU T _J temperature range
i.MX6S	Solo Industrial	800 MHz	-40 °C to +105 °C
i.MX6U	DualLite Industrial	800 MHz	-40 °C to +105 °C
i.MX6D	Dual Industrial	800 MHz	-40 °C to +105 °C
i.MX6Q	Quad Industrial	800 MHz	-40 °C to +105 °C
i.MX6DP	DualPlus Industrial	800 MHz	-40 °C to +105 °C
i.MX6QP	QuadPlus Industrial	800 MHz	-40 °C to +105 °C

3.2.1.2 eFUSES

The eFUSES in the i.MX6 are available for the user, except for the MAC address eFUSES.

TQMa6x modules are delivered pre-programmed with MAC addresses from the TQ-Systems MAC address pool.

The MAC addresses are burned in the designated OCOTP eFUSES (bank 4, word 2, 3).

The MAC address LOCK-FUSE WP (Write Protect) is burnt, which permits to temporarily overwrite the MAC address for test purposes. If this is not desired, the MAC address LOCK-FUSE OP (Overwrite Protect) can be burned by the user.

3.2.1.3 i.MX6 errata

Attention: Malfunction	
	Please take note of the current i.MX6 errata (7), (8).

3.2.1.4 Boot modes

The i.MX6 contains a ROM with integrated boot loader.

After power-up, the boot code initializes the hardware and then loads the program image from the selected boot device.

The eMMC or the SPI NOR flash integrated on the TQMa6x can for example be selected as the standard boot device.

More boot interfaces are available as an alternative to booting from the integrated eMMC or the SPI NOR flash, see 3.2.1.6.

More information about boot interfaces and its configuration is to be taken from the i.MX6 data sheets (1), (2), and (3) as well as the i.MX6 Reference Manuals (4), (5), and (6).

The boot device and its configuration, as well as different i.MX6 settings have to be set via different boot mode registers.

Therefore, the i.MX6 provides two possibilities:

- Burning internal eFuses
- Reading dedicated GPIO pins

The exact behaviour during booting depends on the value of the register BT_FUSE_SEL.

The following table shows the behaviour of the bit BT_FUSE_SEL in dependence of the selected boot mode.

Table 3: Boot modes and BT_FUSE_SEL

BOOT_MODE[1:0]	Boot type	BT_FUSE_SEL	Usage
00 (default)	Boot from eFuses	BT_FUSE_SEL = 0: Boot using Serial Loader (default) BT_FUSE_SEL = 1: Boot configuration is taken from eFuses	Series
01	Serial Downloader	n/a	Development / production
10	Internal Boot	BT_FUSE_SEL = 0: Boot configuration is taken from BOOT_CFG pins (default) BT_FUSE_SEL = 1: Boot configuration is taken from eFuses	Development
11	Reserved	n/a	n/a

Attention: Malfunction

Burning an eFuse is irreversible!

TQ-Systems GmbH takes no responsibility for the correct operation of the TQMa6x, if the user burns eFuses.

Attention: Boot configuration

It is recommended to implement a redundant update concept for field software updates during the carrier board design.

3.2.1.5 Boot configuration

Note: Boot configuration	
	No boot device is preset when the TQMa6x is delivered.

Some general settings are defined by eFuses independent from the boot device.

Table 4: General boot settings

i.MX6		TQMa6x		
eFuse	Option	Setting ³	Signal	Pin
BOOT_CFG1[7:0]	Boot configuration 1: Specific to selected boot mode	-	BOOT_CFG1_7:0	-
BOOT_CFG2[7:0]	Boot configuration 2: Specific to selected boot mode	-	BOOT_CFG2_7:0	-
BOOT_CFG3[7]	L1 I-Cache DISABLE: 0 = Enabled 1 = Disabled	0	BOOT_CFG3_7	X2-97
BOOT_CFG3[6]	BT_MMU_DISABLE: 0 = MMU / L1 D Cache / PL310 enabled 1 = MMU / L1 D Cache / PL310 disabled	0	BOOT_CFG3_6	X2-98
BOOT_CFG3[5]	DDR Memory Map Config: 00 = Single DDR channel 01 = 2 x 32 Map 10 = 4 KB interleaving	0	BOOT_CFG3_5	X2-99
BOOT_CFG3[4]	11 = Reserved (Solo / DualLite / Dual / Quad) 11 = Extension Mode (DualPlus / QuadPlus) (see BOOT_CFG3[1:0])	0	BOOT_CFG3_4	X2-100
BOOT_CFG3[3]	Reserved	0	BOOT_CFG3_3	X2-101
BOOT_CFG3[2]	Boot Frequencies ARM / DDR / AXI: <i>Solo / DualLite:</i> 0 = 792 / 396 / 264 MHz 1 = 396 / 352 / 176 MHz <i>Dual / Quad / DualPlus / QuadPlus:</i> 0 = 792 / 528 / 264 MHz 1 = 396 / 352 / 176 MHz	0	BOOT_CFG3_2	X2-102
BOOT_CFG3[1]	DDR Memory Map Extension Config: ⁴ <i>Quad-Plus/Dual-Plus:</i> 00 = Single DDR Channel / NOC disabled / MMDC reorder enabled 01 = Fixed 2x32 mapping / NOC enabled / MMDC reorder disabled 10 = Reserved 11 = Reserved <i>Quad/Dual:</i> Reserved <i>DualLite/Solo:</i> Disable SDMMC Manufacture mode: ⁵ x0 = Enable x1 = Disable	0	BOOT_CFG3_1	X2-103
BOOT_CFG3[0]		0	BOOT_CFG3_0	X2-104
BOOT_CFG4[7]	Debug loop: 0 = Loop disabled 1 = Loop enabled	0	BOOT_CFG4_7	X2-85
BOOT_CFG4[6:0]	Boot configuration 4: Specific to selected boot mode	-	BOOT_CFG4_6:0	-

3: Voltage level or condition of eFuse.

4: Only valid when BOOT_CFG3[5:4] = 0b11.

5: BOOT_CFG3[1] = Reserved

3.2.1.6 Boot interfaces

In the next chapters, the configuration of the following boot devices is described:

- eMMC
- SPI NOR flash ⁶
- SD card

3.2.1.7 Boot device eMMC

Table 5: Boot configuration eMMC at uSDHC3

i.MX6		TQMa6x		
eFuse	Option	Setting ⁷	Signal	Pin
BOOT_CFG1[7]	Boot Device Selection: 01 = Boot from uSDHC Interfaces	0	BOOT_CFG1_7	X2-115
BOOT_CFG1[6]		1	BOOT_CFG1_6	X2-116
BOOT_CFG1[5]	SD / MMC-Selection: 0 = SD / eSD / SDXC 1 = MMC / eMMC	1	BOOT_CFG1_5	X2-117
BOOT_CFG1[4]	Fast Boot Support: 0 = Regular 1 = Fast Boot	0	BOOT_CFG1_4	X2-118
BOOT_CFG1[3]	MMC Speed Mode: 0x = High Speed Mode 1x = Normal Speed Mode	0	BOOT_CFG1_3	X2-119
BOOT_CFG1[2]		0	BOOT_CFG1_2	X2-120
BOOT_CFG1[1]	eMMC Reset Enable: 0 = eMMC-Reset disabled 1 = eMMC-Reset enabled	1	BOOT_CFG1_1	X2-121
BOOT_CFG2[7]	eMMC Bus Width: 000 = 1 bit 001 = 4 bit 010 = 8 bit 101 = 4 bit DDR (MMC 4.4) 110 = 8 bit DDR (MMC 4.4)	0	BOOT_CFG2_7	X2-107
BOOT_CFG2[6]		1	BOOT_CFG2_6	X2-108
BOOT_CFG2[5]		0	BOOT_CFG2_5	X2-109
BOOT_CFG2[4]		1	BOOT_CFG2_4	X2-110
BOOT_CFG2[3]	Port Select: 00 = uSDHC1 01 = uSDHC2 10 = uSDHC3 11 = uSDHC4	0	BOOT_CFG2_3	X2-111
BOOT_CFG2[2]		0	BOOT_CFG2_2	X2-112
BOOT_CFG2[1]	Boot Acknowledge: 0 = Boot Acknowledge enable 1 = Boot Acknowledge disable	0	BOOT_CFG2_1	X2-113
BOOT_CFG2[0]	Override Pad Settings: 0 = default values 1 = Use PAD_SETTINGS values	0	BOOT_CFG2_0	X2-114

In addition to the mode listed above the following eMMC modes are supported at port uSDHC3.

Table 6: uSDHC3 eMMC modes

eMMC mode	1 Bit	4 Bit	8 Bit	Fast Boot	DDR
Normal Speed	✓	✓	✓	– ⁸	– ⁸
High Speed	✓	✓	✓	– ⁸	– ⁸

6: It is not possible to boot from an SPI NOR flash bigger than 16 Mbyte.

7: Voltage level or condition of eFuse.

8: Not yet supported by software.

3.2.1.8 Boot device SPI NOR flash

Table 7: Boot configuration SPI NOR flash at eCSPI1

i.MX6		TQMa6x		
eFuse	Option	Setting ⁹	Signal	Pin
BOOT_CFG1[7]	Boot Device Selection: 0011 = Boot from Serial ROM	0	BOOT_CFG1_7	X2-115
BOOT_CFG1[6]		0	BOOT_CFG1_6	X2-116
BOOT_CFG1[5]		1	BOOT_CFG1_5	X2-117
BOOT_CFG1[4]		1	BOOT_CFG1_4	X2-118
BOOT_CFG4[6]	EEPROM Recovery: ¹⁰ 0 = disabled 1 = enabled	0	BOOT_CFG4_6	X2-86
BOOT_CFG4[5]	CS select (SPI only): 00 = CS#0 01 = CS#1 10 = CS#2 11 = CS#3	0	BOOT_CFG4_5	X2-89
BOOT_CFG4[4]		1	BOOT_CFG4_4	X2-90
BOOT_CFG4[3]	SPI Addressing (SPI only) 0 = 2-bytes (16-bit) (3.75 MHz Clock) 1 = 3 Bytes (24-bit) (15 MHz Clock)	1	BOOT_CFG4_3	X2-91
BOOT_CFG4[2]	Port Select: 000 = ECSPI-1 001 = ECSPI-2 010 = ECSPI-3 001 = ECSPI-4 100 = ECSPI-5 101 = I2C-1 110 = I2C-2 111 = I2C-3	0	BOOT_CFG4_2	X2-92
BOOT_CFG4[1]		0	BOOT_CFG4_1	X2-93
BOOT_CFG4[0]		0	BOOT_CFG4_0	X2-96

Note: SPI NOR flash size

It is not possible to boot from an SPI NOR flash bigger than 16 Mbyte.

9: Voltage level or condition of eFuse.

10: The i.MX6 supports recovery devices. If this bit is set, the SPI NOR flash serves as recovery boot device.

3.2.1.9 Boot device SD card

Table 8: Boot configuration SD card at uSDHC2

i.MX6		TQMa6x		
eFuse	Option	Setting ¹¹	Signal	Pin
BOOT_CFG1[7]	Boot Device Selection: 01 = Boot from uSDHC Interfaces	0	BOOT_CFG1_7	X2-115
BOOT_CFG1[6]		1	BOOT_CFG1_6	X2-116
BOOT_CFG1[5]	SD / MMC-Selection: 0 = SD / eSD / SDXC 1 = MMC / eMMC	0	BOOT_CFG1_5	X2-117
BOOT_CFG1[4]	Fast Boot: 0 = Regular 1 = Fast Boot	1	BOOT_CFG1_4	X2-118
BOOT_CFG1[3]	SD Speed Mode: 00 = Normal / SDR12 01 = High / SDR25	0	BOOT_CFG1_3	X2-119
BOOT_CFG1[2]	10 = SDR50 (on uSDHC3 and uSDHC4 only) 11 = SDR104 (on uSDHC3 and uSDHC4 only)	0	BOOT_CFG1_2	X2-120
BOOT_CFG1[1]	SD Power Cycle Enable: 0 = No Power Cycle 1 = Power cycle enabled via SD_RST pad (on uSDHC3 and uSDHC4 only)	0	BOOT_CFG1_1	X2-121
BOOT_CFG1[0]	SD Loopback Clock Source Sel (for SDR50 and SDR104 only) 0 = through SD pad 1 = direct	0	BOOT_CFG1_0	X2-122
BOOT_CFG2[7]	SD Calibration Step: 00 = 1 delay cell 01 = 1 delay cell 10 = 2 delay cell 11 = 3 delay cell	0	BOOT_CFG2_7	X2-107
BOOT_CFG2[6]	0	BOOT_CFG2_6	X2-108	
BOOT_CFG2[5]	Bus Width: 0 = 1 bit 1 = 4 bit	1	BOOT_CFG2_5	X2-109
BOOT_CFG2[4]	Port: 00 = uSDHC1 01 = uSDHC2 10 = uSDHC3 11 = uSDHC4	0	BOOT_CFG2_4	X2-110
BOOT_CFG2[3]		1	BOOT_CFG2_3	X2-111
BOOT_CFG2[1]	Pull-Down during SD Power Cycle: 0 = Use default SD pad settings during power cycle 1 = Set pull-down on SD pads during power cycle (only used if "SD Power Cycle Enable" enabled)	0	BOOT_CFG2_1	X2-113
BOOT_CFG2[0]	Override Pad Settings: 0 = Use default values 1 = Use PAD_SETTINGS values	0	BOOT_CFG2_0	X2-114

In addition to the mode listed above the following SD card modes are supported at port uSDHC2:

Table 9: uSDHC2 SD card modes

SD mode	1 Bit	4 Bit	Fast Boot
SDR12	✓	✓	✓
SDR25	✓	✓	✓
SDR50	–	–	–
SDR104	–	–	–

11: Voltage level or condition of eFuse.

3.2.2 Memory

3.2.2.1 DDR3L SDRAM

Depending on the i.MX6 derivative either two or four DDR3L SDRAM chips are assembled on the TQMa6x.

All chips have one common chip select. The chips are connected to the i.MX6 with a 64-bit bus.

(Exception: The i.MX6 "Solo" is connected with a 32-bit bus.)

The following block diagram shows how the DDR3L SDRAM is connected to the i.MX6.

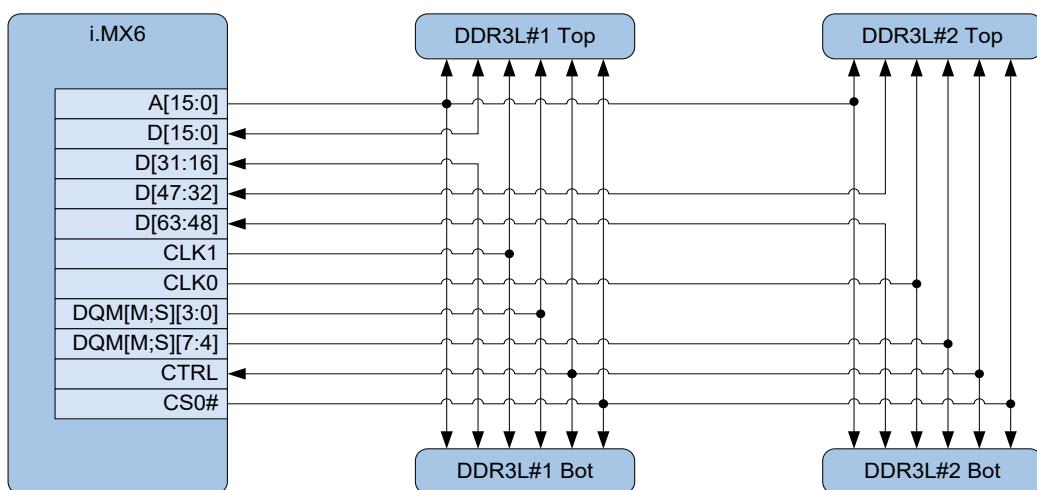


Figure 3: Block diagram DDR3L SDRAM connection

The characteristics of the memory interface depend on the i.MX6 derivative.

The following table shows the different possibilities.

Table 10: i.MX6 SDRAM interface according to i.MX6 derivative

i.MX6 derivative	Bus width	Clock	SDRAM chips
i.MX6 Solo	× 32	396 MHz	2
i.MX6 DualLite	× 64	396 MHz	4
i.MX6 Dual	× 64	528 MHz	4
i.MX6 DualPlus	× 64	528 MHz	4
i.MX6 Quad	× 64	528 MHz	4
i.MX6 QuadPlus	× 64	528 MHz	4

The DDR3L SDRAM assembly options on the TQMa6x are listed in the following table.

Table 11: DDR3L SDRAM memory size options

Assembly option	Size
2 × DDR3L 128M16 / x32	512 Mbyte
2 × DDR3L 256M16 / x32	1 Gbyte
4 × DDR3L 128M16 / x64	1 Gbyte
4 × DDR3L 256M16 / x64	2 Gbyte

The following address range is reserved for the DDR controller in *mode X32 / X64 fixed*.

Table 12: DDR3L SDRAM address range

Start address	Size	Chip Select	Remark
0x1000_0000	0xFFFF_FFFF	CS0#	3840 Mbyte

3.2.2.2 eMMC NAND flash

Attention: Malfunction or destruction

Some Micron eMMC have a too high drive-strength. This can lead to poor signal integrity and a life time reduction of the i.MX6. When using an own bootloader or operating system it is essential to implement the SET_DSR routine, which is part of the BSP as of revision 0102.
The SET_DSR routine as of BSP revision 0102 **must not** be implemented for TQMa6x as of revision **04xx**!

An eMMC NAND flash for the boot loader and the application software is assembled. The Hardware Reset function depends on the BSP implementation. The following block diagram shows how the eMMC flash is connected to the i.MX6.

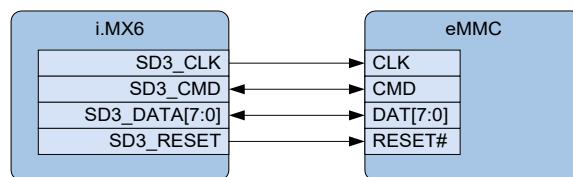


Figure 4: Block diagram eMMC NAND flash connection

3.2.2.3 SPI NOR flash

An SPI NOR flash is also available. It can e.g., serve as boot device or as recovery device.

The following block diagram shows how the SPI NOR flash is connected to the i.MX6.

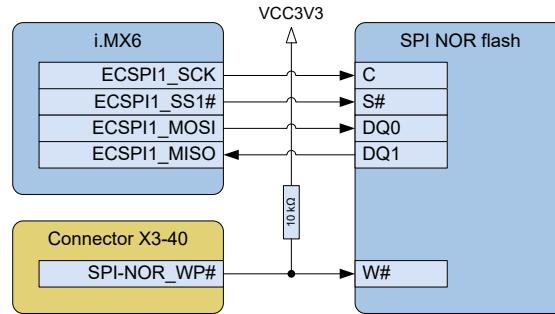


Figure 5: Block diagram SPI NOR flash connection

The write protection pin of the SPI NOR flash is available at connector X3-40.

The reset pin is not connected by default. A reset can only be carried out via a complete power cycle of the TQMa6x.

The SPI NOR flash can be reset by one or more of the following sources (assembly option).

- WDOG1# (see 3.2.5.25)
- MX6_POR# (see 3.2.6)
- GPIO2_IO01 (see 3.2.5.7)

The SPI NOR flashes, which can be assembled on the TQMa6x, are listed in the following table.

Table 13: SPI NOR flash assembly options

Manufacturer	Size	Temperature range
Micron	16 Mbyte ¹²	-40 °C to +85 °C
Micron	32 Mbyte ¹³	-40 °C to +85 °C
Micron	64 Mbyte ¹³	-40 °C to +85 °C
Micron	128 Mbyte ¹³	-40 °C to +85 °C

Attention: Malfunction in SPI-mode

During the boot process, the i.MX6 only supports the 3-byte mode. Special hardware mechanisms are required for 4-byte mode operation else erroneous reboots might occur.

12: Maximum size of SPI NOR flash to boot from.

13: Qualification pending.

3.2.2.4 EEPROM

A serial 64 Kbit EEPROM STM M24C64-WDW6TP is available for permanent storage of e.g. TQMa6x characteristics or customers parameters. Depending on the TQMa6x version, the I²C1 or the I²C3 bus of the i.MX6 controls the EEPROM, see also 3.2.5.9. Write-Protection (WP) is not supported.

The following block diagram shows how the EEPROM is connected to the i.MX6.

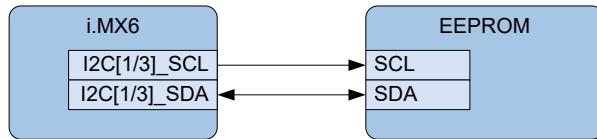


Figure 6: Block diagram EEPROM interface

- The I²C address of the EEPROM is 0x50 / 101 0000b

In the EEPROM, TQMa6x-specific data is stored. It is, however, not essential for the correct operation of the TQMa6x. The user can delete or alter the data.

In the following table, the parameters stored in the EEPROM are shown.

Table 14: EEPROM, TQMa6x-specific data

Offset	Payload (byte)	Padding (byte)	Size (byte)	Type	Remark
0x00	Variable	Variable	32 ₍₁₀₎	Binary	Hard Reset Configuration Word (HRCW), (optional)
0x20	6 ₍₁₀₎	10 ₍₁₀₎	16 ₍₁₀₎	Binary	MAC address
0x30	8 ₍₁₀₎	8 ₍₁₀₎	16 ₍₁₀₎	ASCII	Serial number
0x40	Variable	Variable	64 ₍₁₀₎	ASCII	Order code
0x80	-	-	8064 ₍₁₀₎	-	(Unused)

3.2.3 i.MX6 RTC

The i.MX6 provides an RTC, which has its own power domain (SNVS). The accuracy of the RTC is mainly determined by the characteristics of the quartz used. The type FC-135 used on the TQMa6x has a standard frequency tolerance of ± 20 ppm @ +25 °C. The following block diagram shows the implementation on the TQMa6x.

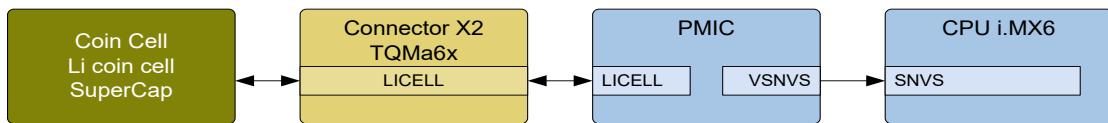


Figure 7: Block diagram RTC

The RTC power domain SNVS of the i.MX6 is supplied by the PMIC-internal regulator VSNVS. This regulator is supplied either by VIN (VDD4V2) or by LICELL. LICELL supports coin cells as well as Lithium coin cells or SuperCaps, which can also be charged by the PMIC. Charging methods and electrical characteristics of the pin LICELL are to be taken from the PMIC data sheet (10).

A coin cell is not suitable for long term bridging because of the high current consumption. A Lithium coin cell or a SuperCap might be an option depending on the use case. It is to be taken note of that the typical charging current is only 60 μ A.

For long term bridging an external RTC connected at the I²C bus on the carrier board is recommended.

Depending on the coin cell voltage (2.4 V to 3.3 V), the typical current consumption of the PMIC RTC at the LICELL pin varies between 85 μ A and 130 μ A.

3.2.4 Temperature sensor

A temperature sensor LM75ADP is assembled on the TQMa6x to monitor the temperature of the TQMa6x.

The LM75ADP is placed on the bottom side of the TQMa6x, (D2 in Figure 22). Depending on the TQMa6x version, the temperature sensor is connected to the I²C1 or the I²C3 bus of the i.MX6, see also 3.2.5.9.

The following block diagram shows how the temperature sensor is connected to the i.MX6.

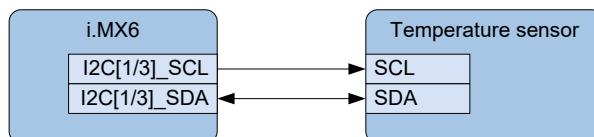


Figure 8: Block diagram temperature sensor interface

The "OS"-output (over-temperature shutdown) of the sensor is not connected.

The following table shows the temperature sensor used.

Table 15: Temperature sensor

Manufacturer	Part number	Resolution	Error	Temperature range
NXP	LM75ADP	11 bit ADC	Max. ± 3 °C	-55 °C to +125 °C

- The I²C address of the temperature sensor is 0x48 / 100 1000b

3.2.5 Interfaces

3.2.5.1 Overview

The TQMa6x provides interfaces with primary functions. They can all be used simultaneously independent of their configuration. Some of the primary functions cannot be used if a secondary function (e.g. the EIM bus) is used.

In the following chapters, only the external primary interfaces are described.

Table 16: Internally used interfaces

Interface	Number	Function	Chapter	Remark
MMDC	1	Primary	3.2.2.1	Multi-Mode DDR controller
uSDHC3	1	Primary	3.2.2.2	eMMC, 8 bit
ECSPI	1	Primary	3.2.2.3	ECSPI1 / SPI NOR flash

Table 17: Externally available interfaces

Interface	Number	Function	Chapter	Remark
AUDMUX	1	Primary	3.2.5.2	AUD3 / I2S
	3	Secondary	–	AUD4 / AUD5 / AUD6 Multiplexing has to be adapted
CCM	2	Primary	3.2.5.3	General Purpose Clocks
ECSPI	2	Primary	3.2.5.4	ECSPI1 / ECSP15
	3	Secondary	–	ECSPI2 / ECSP13 / ECSP14 Multiplexing has to be adapted
EIM	1	Secondary	–	Multiplexing has to be adapted
ENET	1	Primary	3.2.5.5	RGMII (GbE)
	1	Secondary	–	ENET (10/100) / 1588 Multiplexing has to be adapted
EPIT	2	Secondary	–	EPIT1 / EPIT2 Multiplexing has to be adapted
ESAI	1	Secondary	–	Multiplexing has to be adapted
FLEXCAN	2	Primary	3.2.5.6	FLEXCAN1 / FLEXCAN2
GPIO	40	Primary	3.2.5.7	–
GPMI	1	Secondary	–	Multiplexing has to be adapted
GPT	1	Secondary	–	Multiplexing has to be adapted
HDMI	1	Primary	3.2.5.8	–
I ² C	2	Primary	3.2.5.9	I2C1 / I2C3
	1	Secondary	–	I2C2 Multiplexing has to be adapted
IPU	1	Primary	3.2.5.11	DISP0 (RGB)
	4	Secondary	–	CSI0 / CSI1 / DISP0 / DISP1 Multiplexing has to be adapted
KPP	1	Secondary	–	Multiplexing has to be adapted
LDB	2	Primary	3.2.5.12	LVDS0 / LVDS1
MIPI_CSI	1	Primary	3.2.5.13	–
MIPI_DSI	1	Primary	3.2.5.14	–
MIPI_HSI	1	Secondary	–	Multiplexing has to be adapted
MLB	1	Primary	3.2.5.15	–
PCIe	1	Primary	3.2.5.16	–
PWM	4	Primary	3.2.5.17	PWM1 / PWM3 / PWM4
	1	Secondary	–	PWM2 Multiplexing has to be adapted
SATA	1	Primary	3.2.5.18	–
SJC	1	Primary	3.2.5.19	JTAG
S/PDIF	1	Primary	3.2.5.20	–
TAMPER	1	Primary	3.2.5.21	–
UART	4	Primary	3.2.5.22	UART2 / UART3 / UART4 / UART5
	1	Secondary	–	UART1 Multiplexing has to be adapted
USB	2	Primary	3.2.5.23	USB_H1 / USB_OTG
uSDHC	1	Primary	3.2.5.24	uSDHC2 / SD card / 1/4/8 Bit
	2	Secondary	–	uSDHC1 / uSDHC4 Multiplexing has to be adapted
WDOG	1	Primary	3.2.5.25	WDOG1
	1	Secondary	–	WDOG2 Multiplexing has to be adapted
XTAL	2	Primary	3.2.5.26	XTALOSC1 / XTALOSC2

3.2.5.2 AUDMUX

The signals of the digital audio multiplexer 3 (AUD3) are available via SSI on the connectors.

The following table shows the signals used by the AUD3 interface.

Table 18: Signals AUD3

Signal name	Direction	Signal I ² S	i.MX6 ball	TQMa6x
AUD3_RXC	I	–	M1	X1-99
AUD3_RXD	I	I2S_DOUT	N3	X1-103
AUD3_RXFS	I	–	M3	X1-101
AUD3_TXC	O	I2S_SCLK	N1	X1-100
AUD3_TXD	O	I2S_DIN	P2	X1-104
AUD3_TXFS	O	I2S_LRCLK	N4	X1-102

➤ Signal CCM_CLKO1 is used as I₂C_MCLK in the [BSP provided by TQ-Systems](#).

Besides I²S, the SSI interface supports more synchronous modes.

Details are to be taken from the NXP Reference Manuals (4), (5), and (6).

3.2.5.3 CCM

The i.MX6 clock controller CCM provides two programmable clocks. The following table shows the signals of the CCM.

Table 19: Signals CCM

Signal name	Direction	i.MX6 ball	TQMa6x	Remark
CCM_CLKO1	O	P4	X1-78	TQ-BSP: I2S_MCLK
CCM_CLKO2	O	A17	X2-82	–

3.2.5.4 ECSPI

The i.MX6 provides five ECSPI interfaces. Primarily ECSPI1 and ECSPI5 are available at the connectors. The i.MX6 derivatives "Solo" and "DualLite" do not provide ECSPI5. The following table shows the signals used by the ECSPI1 and ECSPI5 interfaces.

Table 20: Signals ECSPI1, ECSPI5

Signal name	Direction	i.MX6 ball	TQMa6x	Remark
ECSPI1_SCLK	O	C25	X2-64	–
ECSPI1_MOSI	O	D24	X2-66	–
ECSPI1_MISO	I	F21	X2-63	–
ECSPI1_SS1#	O	G21	X2-65	Used by optional SPI NOR flash on TQMa6x
ECSPI1_SS2#	O	F22	X2-72	–
ECSPI1_SS3#	O	G22	X2-71	–
ECSPI5_SCLK	O	D20	X1-114	–
ECSPI5_MOSI	O	B21	X1-110	–
ECSPI5_MISO	I	A21	X1-108	–
ECSPI5_SS0#	O	C20	X1-112	–

3.2.5.5 ENET

The i.MX6 provides a 10/100/1000 MAC core, which supports MII, RMII and RGMII.

The RGMII signals are available as primary function at the connectors.

The following table shows the signals used by the RGMII interface.

Table 21: Signals RGMII

Signal name	Direction	i.MX6 ball	TQMa6x	Power group
ENET_MDC	O	V20	X2-49	NVCC_ENET (2.5 V / 3.3 V)
ENET_MDIO	I/O	V23	X2-51	
ENET_REFCLK	I	V22	X2-50	
RGMII_RD3	I	D23	X2-43	
RGMII_RD2	I	B24	X2-41	
RGMII_RD1	I	B23	X2-39	
RGMII_RD0	I	C24	X2-37	
RGMII_RX_CTL	I	D22	X2-45	
RGMII_RXC	I	B25	X2-33	
RGMII_TD3	O	A24	X2-44	
RGMII_TD2	O	E21	X2-42	
RGMII_TD1	O	F20	X2-40	
RGMII_TD0	O	C22	X2-38	
RGMII_TX_CTL	O	C23	X2-46	
RGMII_TXC	O	D21	X2-34	

Note: NVCC_ENET

NVCC_ENET_IN (X2-53) has to be connected externally!

The RGMII interface of the i.MX6 works with an I/O voltage of 2.5 V. In order to use the interface, additional signals of the signal group ENET are required. The accompanying power supply pin is routed to the connector to operate these signals on the same I/O voltage, if RGMII is used.

- If RGMII is used, NVCC_ENET_IN has to be connected to VCC2V5_RGMII_OUT (X2-54).
It is important that all ten signals of the signal group ENET are then also set to 2.5 V.
- If RGMII is not required, NVCC_ENET_IN has to be connected to VCC3V3_REF_OUT (X2-56).

By adapting the multiplexing, it is possible to use MII or RMII.

Details are to be taken from the NXP Reference Manuals (4), (5), and (6).

3.2.5.5 ENET (continued)

Attention: Max. load on VCC2V5_RGMII_OUT

In order to spare an additional I/O voltage power supply on the carrier board, the voltage VCC2V5_RGMII_OUT provided by the TQMa6x can be used as I/O supply voltage for an RGMII-PHY. VCC2V5_RGMII_OUT provides a maximum of 200 mA, of which the TQMa6x requires approximately 80 mA.

Attention: Special function of TQMa6x pin X1–150

The pad GPIO_16 / ball R2 / signal GPIO7_IO11 of the i.MX6 (TQMa6x pin X1–150) has a special function with different Ethernet functions. More information is to be taken from the NXP Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (9).

Note: NXP erratum ERR006687, reduced ENET performance

On account of the NXP erratum ERR006687, which describes reduced ENET performance when responding to interrupts, new variants were introduced with TQMa6x revision 04xx. The workaround provided by NXP is implemented on variants "A" and "C" of TQMa6x revision 04xx. Please note, that the Letters "A", "B", and "C" must not be confused with the letters in the order code of the e.g., TQMa6Q-AA. The letters in the order code do not reflect a certain variant. Please contact [TQ-Support](#) for more information regarding the desired variant.

The following table shows the three possible variants.

Table 22: ENET-Patch variants

Variant	Short description	Remark
A	2 × I2C1 + ENET-Patch	For Solo, DualLite, Dual, and Quad CPUs, designed to work on MBa6x
B	1 × I2C1 + 1 × I2C3	For DualPlus and QuadPlus, fully backward compatible to TQMa6x revision 01xx
C	1 × I2C1 + ENET-Patch + 1 × GPIO	Provides an additional GPIO compared to Variant "A", not designed to work on MBa6x

Figure 9, Figure 10, and Figure 11 show the different variants, see also 3.2.5.9.

3.2.5.6 FLEXCAN

The i.MX6 provides two integrated CAN controllers. Both pairs of signals are available at the connectors.

The drivers required have to be implemented on the carrier board.

The following table shows the signals used by the CAN interface.

Table 23: Signals FLEXCAN

Signal name	Direction	i.MX6 ball	TQMa6x
CAN1_TX	O	W6	X1-96
CAN1_RX	I	W4	X1-94
CAN2_TX	O	T6	X1-92
CAN2_RX	I	V5	X1-90

3.2.5.7 GPIO

Beside their interface function, most of the i.MX6 pins can also be used as GPIO.

All these GPIOs can trigger an interrupt. Details are to be taken from the NXP Reference Manuals (4), (5), and (6).

The electrical characteristics of the GPIOs are to be taken from the NXP Data Sheets (1), (2), and (3).

In addition, different pins are already marked as GPIO and are available at the connectors.

The following table shows the GPIO signals used.

Table 24: Signals GPIO

Signal name	Direction	i.MX6 ball	TQMa6x	Remark
GPIO1_IO5	I/O	R4	X1-86	Only on Variant "C", see Figure 11
GPIO1_IO30	I/O	U20	X1-149	–
GPIO1_IO29	I/O	W20	X1-151	–
GPIO1_IO28	I/O	V21	X1-153	–
GPIO1_IO26	I/O	W22	X1-154	–
GPIO1_IO25	I/O	U21	X1-155	–
GPIO1_IO21	I/O	F18	X1-106	–
GPIO1_IO8	I/O	R5	X1-157	–
GPIO1_IO7	I/O	R3	X1-152	–
GPIO2_IO25	I/O	J24	X2-81	–
GPIO2_IO24	I/O	J23	X2-83	–
GPIO2_IO23	I/O	H24	X2-84	–
GPIO2_IO11	I/O	A20	X1-23	–
GPIO2_IO8	I/O	D18	X1-21	–
GPIO2_IO3	I/O	D17	X1-19	–
GPIO2_IO2	I/O	F16	X1-17	–
GPIO2_IO1	I/O	C17	X1-15	Optional reset source for SPI NOR flash, see 3.2.2.3
GPIO2_IO0	I/O	A18	X1-13	–
GPIO3_IO29	I/O	J19	X2-77	–
GPIO3_IO28	I/O	G23	X2-78	–
GPIO3_IO27	I/O	E25	X2-75	–
GPIO3_IO26	I/O	E24	X2-76	–
GPIO3_IO23	I/O	D25	X2-69	–
GPIO3_IO20	I/O	G20	X2-68	–
GPIO4_IO9	I/O	U6	X2-58	–
GPIO4_IO8	I/O	U7	X2-57	–
GPIO4_IO7	I/O	V6	X2-55	–
GPIO4_IO6	I/O	W5	X1-74	–
GPIO4_IO5	I/O	P5	X1-113	–
GPIO5_IO21	I/O	M2	X1-84	–
GPIO5_IO20	I/O	P3	X1-111	–
GPIO5_IO18	I/O	P1	X1-82	–
GPIO6_IO31	I/O	N22	X2-126	–
GPIO6_IO16	I/O	D16	X2-94	–
GPIO6_IO14	I/O	C16	X1-31	–
GPIO6_IO11	I/O	F15	X1-29	–
GPIO6_IO8	I/O	A16	X1-27	–
GPIO6_IO7	I/O	C15	X1-25	–
GPIO7_IO13	I/O	P6	X1-148	–
GPIO7_IO12	I/O	R1	X1-72	–
GPIO7_IO11	I/O	R2	X1-150	–

3.2.5.8 HDMI

The i.MX6 provides an integrated HDMIv1.4 controller plus PHY.

The following table shows the signals used by the HDMI interface.

Table 25: Signals HDMI

Signal name	Direction	i.MX6 ball	TQMa6x
HDMI_CLK_P	O	J6	X1-40
HDMI_CLK_N	O	J5	X1-38
HDMI_D2_P	O	K4	X1-58
HDMI_D2_N	O	K3	X1-56
HDMI_D1_P	O	J4	X1-52
HDMI_D1_N	O	J3	X1-50
HDMI_D0_P	O	K6	X1-46
HDMI_D0_N	O	K5	X1-44
HDMI_DDC_SCL	O	U5	X1-62
HDMI_DDC_SDA	I/O	T7	X1-64
HDMI_HPD	I	K1	X1-66

3.2.5.9 I²C

The i.MX6 derivatives "Solo" and "DualLite" provide four I²C interfaces, the i.MX6 derivatives "Dual", "DualPlus", "Quad", and "QuadPlus" provide three I²C interfaces. I²C1 is always available as primary function at the connectors, while the availability of I²C3 as primary function depends on the TQMa6x "Variant". For details see 3.2.5.10.

The following table shows the signals used by the I²C interfaces.

Table 26: Signals I²C

Signal name	Dir.	i.MX6 ball	TQMa6x	Remark
I2C1_SCL	O	N5	X1-107	4.7 kΩ PU to 3.3 V on TQMa6x, no PU on Variant "B", see Figure 10
I2C1_SDA	I/O	N6	X1-109	4.7 kΩ PU to 3.3 V on TQMa6x, no PU on Variant "B", see Figure 10
I2C3_SCL	O	R4	X1-86	4.7 kΩ PU to 3.3 V on TQMa6x Variant "B", see Figure 10
I2C3_SDA	I/O	T3	X1-88	4.7 kΩ PU to 3.3 V on TQMa6x Variant "B", see Figure 10

The following table shows the I²C devices connected either to the I²C1 or the I²C3 bus on the TQMa6x (depending on the Variant, see Figure 9, Figure 10, and Figure 11).

Table 27: I²C address mapping

Component	Address
EEPROM (M24C64)	0x50 / 101 0000b
Temperature sensor (LM75A)	0x48 / 100 1000b
PMIC (PF0100A)	0x08 / 000 1000b

If more devices are connected to the I²C buses on the carrier board, the maximum capacitive bus load according to the I²C standard has to be taken note of. If necessary, additional Pull-Ups at the bus should be provided on the carrier board.

3.2.5.10 I²C / ENET-Patch Variants

For TQMa6x revision 04xx to be backward compatible with TQMa6x revision 02xx, the I²C bus configuration varies on account of Erratum ERR006687 (see also chapter 3.2.5.5).

Variant "A" is preferred for TQMa6x with "Solo", "DualLite", "Dual", and "Quad" CPUs.

Erratum ERR006687 is fixed in "DualPlus" and "QuadPlus" CPUs.

The following block diagrams show the different Variants.

TQMa6x.04xx Variant "A" is compatible with the Starterkit MBa6x.

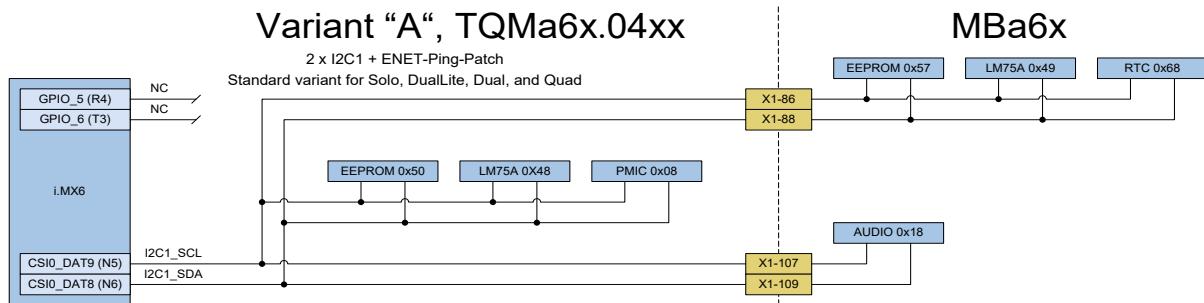


Figure 9: ENET-Patch Variant "A"

TQMa6x.04xx Variant "B" is also fully backward compatible (HW + SW) with designs based on TQMa6x revision 01xx.

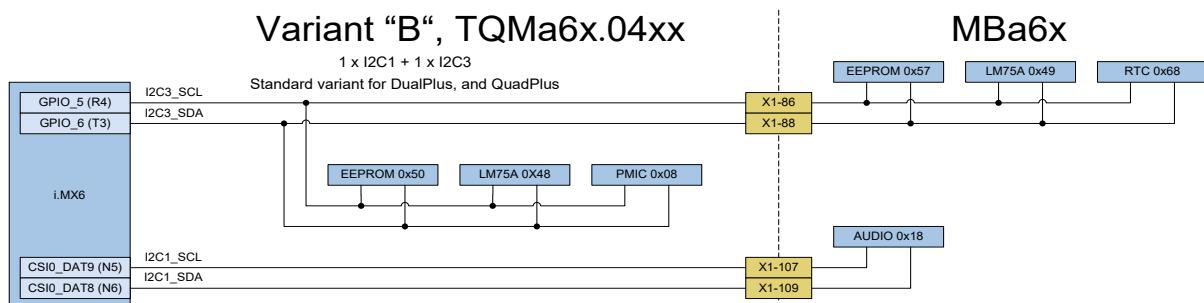


Figure 10: ENET-Patch Variant "B"

TQMa6x.04xx Variant "C" provides an additional GPIO compared to Variant "A" but is not compatible with the MBa6x.

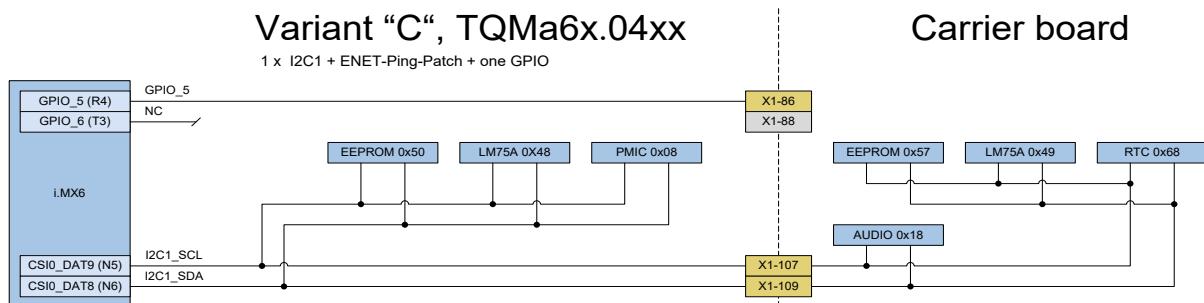


Figure 11: ENET-Patch Variant "C"

3.2.5.11 IPU

The i.MX6 provides two parallel display interfaces (maximum resolution: 4096 × 2048). One of them, DISP0, is routed to the connectors as primary function. Information with respect to the supported types of displays and formats are to be taken from the NXP Reference Manuals (4), (5), and (6).

The following table shows the signals used by the display interface DISP0.

Table 28: Signals DISP0

Signal name	Direction	i.MX6 ball	TQMa6x	Remark
DISP0_DAT23	O	W24	X2-158	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA23
DISP0_DAT22	O	V24	X2-157	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA22
DISP0_DAT21	O	T20	X2-156	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA21
DISP0_DAT20	O	U22	X2-155	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA20
DISP0_DAT19	O	U23	X2-154	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA19
DISP0_DAT18	O	V25	X2-153	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA18
DISP0_DAT17	O	U24	X2-152	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA17
DISP0_DAT16	O	T21	X2-151	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA16
DISP0_DAT15	O	T22	X2-150	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA15
DISP0_DAT14	O	U25	X2-149	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA14
DISP0_DAT13	O	R20	X2-148	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA13
DISP0_DAT12	O	T24	X2-147	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA12
DISP0_DAT11	O	T23	X2-144	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA11
DISP0_DAT10	O	R21	X2-143	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA10
DISP0_DAT9	O	T25	X2-142	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA9
DISP0_DAT8	O	R22	X2-141	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA8
DISP0_DAT7	O	R24	X2-140	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA7
DISP0_DAT6	O	R23	X2-139	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA6
DISP0_DAT5	O	R25	X2-138	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA5
DISP0_DAT4	O	P20	X2-137	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA4
DISP0_DAT3	O	P21	X2-136	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA3
DISP0_DAT2	O	P23	X2-135	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA2
DISP0_DAT1	O	P22	X2-134	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA1
DISP0_DAT0	O	P24	X2-133	Display Output RGB-Data i.MX6 signal: IPU1_DISP0_DATA0
DISP0_HSYNC	O	N25	X2-128	Display Output Horizontal Sync i.MX6 signal: IPU1_DIO_PIN2
DISP0_VSYNC	O	N20	X2-130	Display Output Vertical Sync i.MX6 signal: IPU1_DIO_PIN3
DISP0_CLK	O	N19	X2-125	Display Output Clock i.MX6 signal: IPU1_DIO_DISP_CLK
DISP0_DRDY	O	N21	X2-127	Display Output Data Enable i.MX6 signal: IPU1_DIO_PIN15
DISP0_CONTRAST	O	P25	X2-129	Display Backlight PWM i.MX6 signal: IPU1_DIO_PIN4 ¹⁴

14: Currently not supported; use PWM1 instead.

3.2.5.12 LDB

The i.MX6 provides two integrated LVDS display-bridges, which are routed to the connectors. The following table shows the signals used by the LVDS0 interface.

Table 29: Signals LVDS0, LVDS1

Signal name	Direction	i.MX6 ball	TQMa6x
LVDS0_CLK_P	O	V3	X1-138
LVDS0_CLK_N	O	V4	X1-136
LVDS0_TX3_P	O	W1	X1-144
LVDS0_TX3_N	O	W2	X1-142
LVDS0_TX2_P	O	V1	X1-132
LVDS0_TX2_N	O	V2	X1-130
LVDS0_TX1_P	O	U3	X1-126
LVDS0_TX1_N	O	U4	X1-124
LVDS0_TX0_P	O	U1	X1-120
LVDS0_TX0_N	O	U2	X1-118
LVDS1_CLK_P	O	Y4	X1-137
LVDS1_CLK_N	O	Y3	X1-135
LVDS1_TX3_P	O	AA4	X1-143
LVDS1_TX3_N	O	AA3	X1-141
LVDS1_TX2_P	O	AB2	X1-131
LVDS1_TX2_N	O	AB1	X1-129
LVDS1_TX1_P	O	AA1	X1-125
LVDS1_TX1_N	O	AA2	X1-123
LVDS1_TX0_P	O	Y2	X1-119
LVDS1_TX0_N	O	Y1	X1-117

3.2.5.13 MIPI_CSI

The i.MX6 provides a MIPI Camera Sensor Interface (CSI), which is routed to connector X3.

The following table shows the signals used by the MIPI_CSI interface.

Table 30: Signals MIPI_CSI

Signal name	Direction	i.MX6 ball	TQMa6x
CSI_CLK0_P	I	F3	X3-5
CSI_CLK0_N	I	F4	X3-3
CSI_D3_P	I	F1	X3-29
CSI_D3_N	I	F2	X3-27
CSI_D2_P	I	E2	X3-23
CSI_D2_N	I	E1	X3-21
CSI_D1_P	I	D2	X3-17
CSI_D1_N	I	D1	X3-15
CSI_D0_P	I	E3	X3-11
CSI_D0_N	I	E4	X3-9

3.2.5.14 MIPI_DSI

The i.MX6 provides a MIPI Display Serial Interface (DSI), which is routed to connector X3.

The following table shows the signals used by the MIPI_DSI interface.

Table 31: Signals MIPI_DSI

Signal name	Direction	i.MX6 ball	TQMa6x
DSI_CLK0_P	O	H4	X3-24
DSI_CLK0_N	O	H3	X3-22
DSI_D1_P	O	H1	X3-36
DSI_D1_N	O	H2	X3-34
DSI_D0_P	O	G1	X3-30
DSI_D0_N	O	G2	X3-28

3.2.5.15 MLB¹⁵

The i.MX6 provides, depending on the derivative, a Media-Local-Bus interface (MLB), which is routed to the connectors.

The following table shows the signals used by the MLB interface.

Table 32: Signals MLB

Signal name	Direction	i.MX6 ball	TQMa6x
MLB_C_P	I	B11	X3-6
MLB_C_N	I	A11	X3-4
MLB_S_P	I/O	B9	X3-18
MLB_S_N	I/O	A9	X3-16
MLB_D_P	I/O	A10	X3-12
MLB_D_N	I/O	B10	X3-10

15: Currently not supported.

3.2.5.16 PCIe

The i.MX6 provides a PCIe interface, which is routed to the connectors.

The following table shows the signals used by the PCIe interface.

Table 33: Signals PCIe

Signal name	Direction	i.MX6 ball	TQMa6x
PCIE_TX_P	O	B3	X1-16
PCIE_TX_N	O	A3	X1-14
PCIE_RX_P	I	B2	X1-22
PCIE_RX_N	I	B1	X1-20

CLK1 can be used as a differential clock (see 3.2.5.26).

3.2.5.17 PWM

The i.MX6 provides several PWMs, which are routed to the connectors.

The following table shows the available PWM signals.

Table 34: Signals PWM

Signal name	Direction	i.MX6 ball	TQMa6x	Remark
PWM1	O	T2	X1-147	TQ-BSP: BACKLIGHT_PWM (DISP0_CONTRAST)
PWM3	O	B19	X1-33	–
PWM4	O	F17	X1-105	–

3.2.5.18 SATA

The i.MX6 provides a SATA controller with integrated PHY.

The following table shows the signals used by the SATA interface.

Table 35: Signals SATA

Signal name	Direction	i.MX6 ball	TQMa6x
SATA_TX_P	O	A12	X1-63
SATA_TX_N	O	B12	X1-61
SATA_RX_P	I	B14	X1-57
SATA_RX_N	I	A14	X1-55

3.2.5.19 SJC

The i.MX6 can operate in two different JTAG modes. The pin JTAG_MOD defines the mode.

The following table shows the existing modes as well as the mode set on the TQMa6x.

Table 36: JTAG modes

JTAG_MOD	Name	Remark
0 (default)	Daisy Chain All	For common SW debug (High speed and series production)
1	SJC only	IEEE 1149.1 JTAG compliant mode

The following table shows the signals used by the JTAG interface.

Table 37: Signals JTAG

Signal name	Direction	i.MX6 ball	TQMa6x	Remark
JTAG_TCK	I	H5	X1-77	i.MX6-internal PU 47 kΩ
JTAG_TMS	I	C3	X1-69	i.MX6-internal PU 47 kΩ
JTAG_TDI	I	G5	X1-71	i.MX6-internal PU 47 kΩ
JTAG_TDO	O	G6	X1-73	i.MX6-internal keeper
JTAG_TRST#	I	C2	X1-67	i.MX6-internal PU 47 kΩ
JTAG_MOD	I	H6	X1-75	4.7 kΩ PD on TQMa6x + i.MX6-internal 100 kΩ PU

3.2.5.20 S/PDIF

The i.MX6 provides an S/PDIF interface with transmit and receive functionality.

The following table shows the signals used by the S/PDIF interface.

Table 38: Signals S/PDIF

Signal name	Direction	i.MX6 ball	TQMa6x
SPDIF_IN	I	W23	X1-158
SPDIF_OUT	O	W21	X1-156

3.2.5.21 Tamper

The i.MX6 provides protection against unauthorised opening or manipulation of a device by tamper detection.

The pin TAMPER is available at the connectors for this purpose.

The following table shows the signal used.

Table 39: Signal TAMPER

Signal name	Direction	i.MX6 ball	TQMa6x
TAMPER	I	E11	X3-39

Details about the behaviour of the TAMPER pin are to be taken from the NXP Reference Manuals (4), (5), and (6).

3.2.5.22 UART

The i.MX6 provides five UART interfaces. UART2 to UART5 also provide handshake signals. All four interfaces (UART2 to UART5) are available as primary function at the connectors.

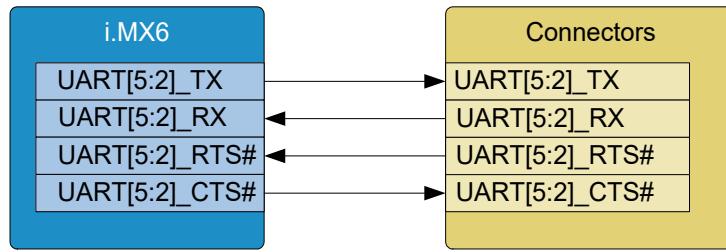


Figure 12: Block diagram UART interfaces

The following table shows the signals used by the UART interfaces.

Table 40: Signals UARTs

Signal name	Direction	i.MX6 ball	TQMa6x	Remark
UART5_TXD	O	M4	X1-91	–
UART5_RXD	I	M5	X1-89	–
UART5_CTS#	O	L6	X1-95	–
UART5_RTS#	I	M6	X1-93	–
UART4_TXD	O	M2	X1-83	–
UART4_RXD	I	L1	X1-81	–
UART4_CTS#	O	L3	X1-87	–
UART4_RTS#	I	L4	X1-85	–
UART3_TXD	O	B17	X2-61	–
UART3_RXD	I	E16	X2-59	–
UART3_CTS#	O	J20	X2-80	–
UART3_RTS#	I	H21	X2-79	–
UART2_TXD	O	D19	X2-29	–
UART2_RXD	I	E18	X2-27	–
UART2_CTS#	O	B20	X2-30	Multiplexed as GPIO in the TQ-BSP
UART2_RTS#	I	C19	X2-28	Multiplexed as GPIO in the TQ-BSP

3.2.5.23 USB

The TQMa6x provides one USB Host controller and one USB OTG controller. USB HOST1 and USB OTG provide an integrated High-Speed PHY. USB HOST1 and USB OTG are available at the connectors as primary function.

The following table shows the signals used by the USB_H1 interface.

Table 41: Signals USB_H1

Signal name	Direction	i.MX6 ball	TQMa6x	Remark
USB_H1_DP	I/O	E10	X1-32	–
USB_H1_DN	I/O	F10	X1-34	–
USB_H1_PWR	O	T5	X1-39	–
USB_H1_OC	I	R7	X1-41	High-active
USB_H1_VBUS	P	D10	X1-37	Should be directly connected to a 5 V supply

The following table shows the signals used by the USB_OTG interface.

Table 42: Signals USB_OTG

Signal name	Direction	i.MX6 ball	TQMa6x	Remark
USB_OTG_DP	I/O	A6	X1-49	–
USB_OTG_DN	I/O	B6	X1-51	–
USB_OTG_ID	I	T4	X1-45	Device Mode: Connect to Micro-USB connector Host Mode: Connect to Micro-USB connector and to Ground
USB_OTG_PWR	O	E23	X2-70	–
USB_OTG_OC#	I	H20	X2-67	Low-active
USB_OTG_VBUS	P	E9	X1-43	–

3.2.5.24 uSDHC

The uSDHC2 port of the i.MX6 is routed to the connectors to connect an MMC, SD or SDIO card.

The following table shows the signals used by the uSDHC interface.

Table 43: Signals uSDHC2

Signal name	Direction	i.MX6 ball	TQMa6x
SD2_DAT7	I/O	C18	X2-10
SD2_DAT6	I/O	E17	X2-9
SD2_DAT5	I/O	B18	X2-8
SD2_DAT4	I/O	A19	X2-7
SD2_DAT3	I/O	B22	X2-6
SD2_DAT2	I/O	A23	X2-5
SD2_DAT1	I/O	E20	X2-4
SD2_DAT0	I/O	A22	X2-3
SD2_CLK	O	C21	X2-13
SD2_CMD	I/O	F19	X2-12
SD2_CD#	I	R6	X2-14
SD2_WP	O	T1	X2-11

3.2.5.25 Watchdog

The i.MX6 provides a watchdog timer.

The following table shows the signal used by the watchdog timer.

Table 44: Signal WDOG

Signal name	Direction	i.MX6 ball	TQMa6x
WDOG1#	O	E19	X2-60

The watchdog of the i.MX6 has two functions:

- **Power-down counter**

After the i.MX6 is reset, a power-down counter is automatically started. If this is not deactivated within 16 seconds, signal WDOG1# becomes active. More information is to be taken from the NXP Reference Manuals (4), (5), and (6).

- **Watchdog timer**

If the watchdog timer is activated and is not reset within the configured time, signal WDOG1# is activated.

At the same time, the i.MX6 System Reset Controller triggers a warm reset.

Signal WDOG1# remains at low level or Hi-Z until the next power-on reset.

More information is to be taken from the NXP Reference Manuals (4), (5), and (6).

Optionally, the watchdog can be used as a reset source for the SPI-NOR flash.

3.2.5.26 XTAL

The i.MX6 provides two differential clock outputs, which are routed to the connectors.

The following table shows the signals used.

Table 45: Signals XTAL

Signal name	Direction	i.MX6 ball	TQMa6x
CLK2_P	O	D5	X3-35
CLK2_N	O	C5	X3-33
CLK1_P	O	D7	X1-28
CLK1_N	O	C7	X1-26

3.2.6 Reset

A reset input and a reset output is available at the connectors of the TQMa6x.

The following block diagram shows the wiring of the reset signals.

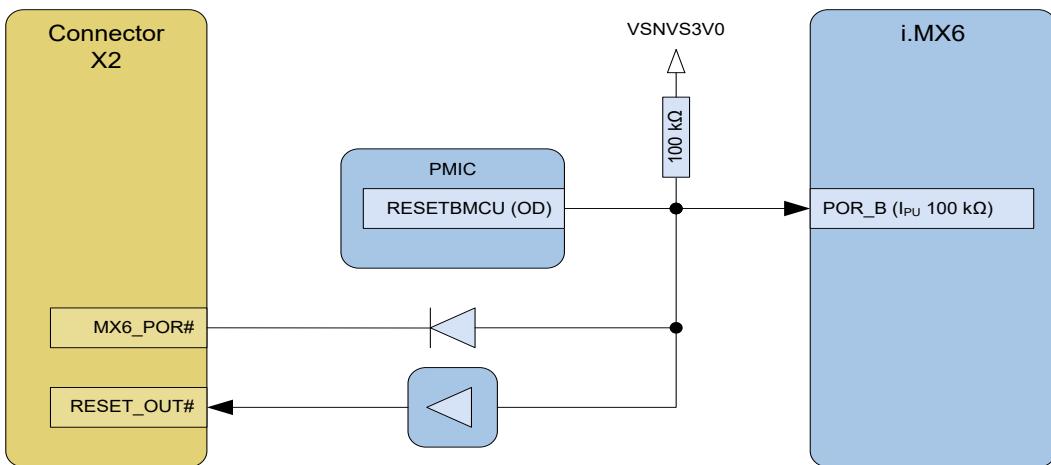


Figure 13: Block diagram Reset

The following table describes the reset signals available at the connectors.

Table 46: Reset signals

Signal name	i.MX6 ball	TQMa6x	Direction	Remark
MX6_POR#	C12	X2-23	I _{PU} 100 kΩ	<ul style="list-style-type: none"> Reset input POR_B (Power-On Reset) of the i.MX6 Triggers an i.MX6 COLD reset Low-active Minimal duration to trigger a reliable Reset: app. 30 µs, see also (1), (2), and (3)
RESET_OUT#	-	X2-25	O _{OD}	<ul style="list-style-type: none"> PMIC Reset output RESETBMCU Can be used to reset external periphery Open Drain, requires Pull-Up on the carrier board (max. 3.3 V)

3.2.7 Power supply

3.2.7.1 Overview TQMa6x power supply

The input voltage for the TQMa6x is $5\text{ V} \pm 5\%$ (4.75 V to 5.25 V).

In addition to the required PMIC, another voltage converter is assembled on the TQMa6x to provide the 4.2 V for the PMIC.

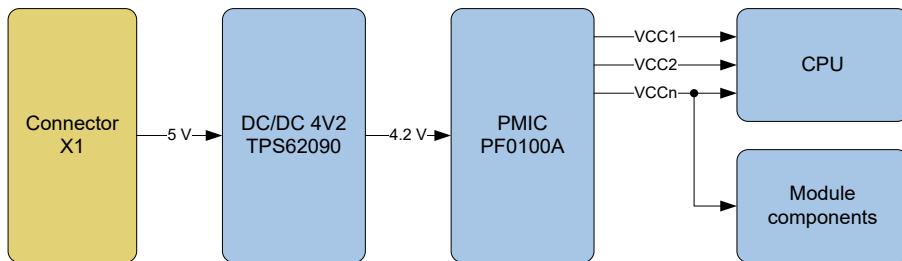


Figure 14: Block diagram power supply

The characteristics and functions of the single pins and signals are to be taken from the PMIC data sheet (10) or the i.MX6 Reference Manuals (4), (5), and (6). The following block diagram shows the circuitry between PMIC and i.MX6.

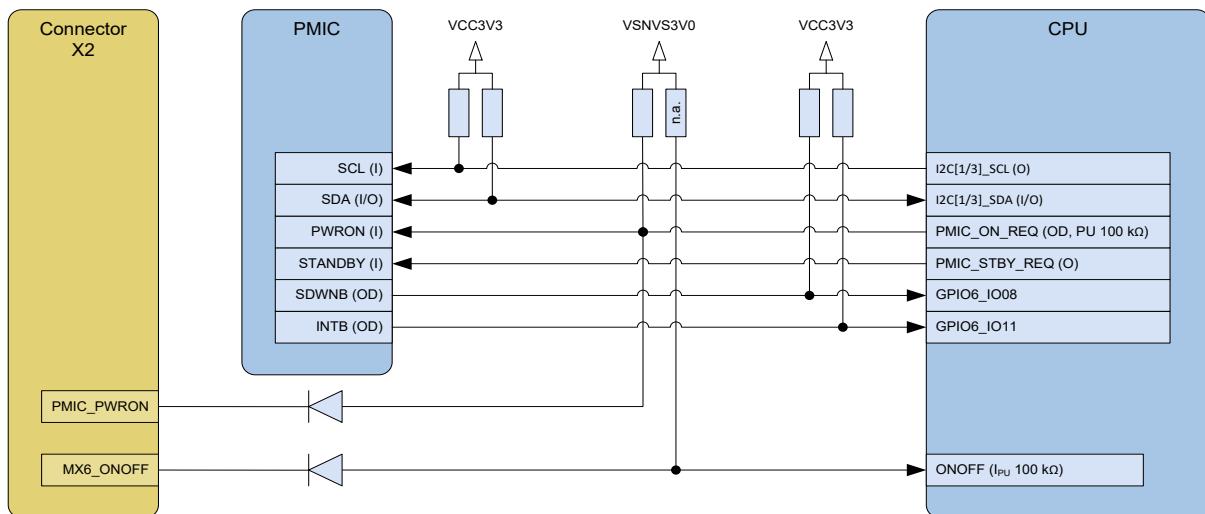


Figure 15: Block diagram PMIC signals

Attention: Malfunction or destruction

Improper PMIC programming may cause the i.MX6 or other components on the TQMa6x to operate outside their specification. This can lead to malfunction, deterioration or destruction of the TQMa6x.

3.2.7.2 Voltage monitoring VCC5V

A supervisor on the TQMa6x monitors the input voltage of the TQMa6x (VCC5V). If the input voltage is too low, the input regulator DCDC4V2 is not enabled or disabled. The supervisor triggers typically at $4.55\text{ V} \pm 100\text{ mV}$ and has a delay of 200 ms. The following block diagram shows the wiring.

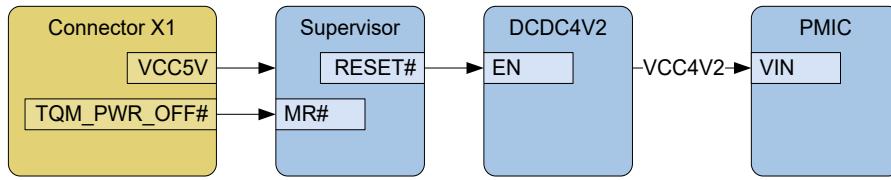


Figure 16: Block diagram VCC5V monitoring

With signal TQM_PWR_OFF# the TQMa6x can be switched off completely. This ensures the lowest possible power consumption. If TQM_PWR_OFF# is not used, the pin can remain open or be connected to 5 V (TQMa6x supply).

To switch off the TQMa6x, TQM_PWR_OFF# has to be connected to GND.

Attention: Malfunction or destruction

The voltage monitoring does not detect an exceedance of the maximum permitted input voltage. A too high input voltage can cause malfunction, deterioration or destruction of the TQMa6x.

3.2.7.3 Power consumption TQMa6x

The given current consumption has to be seen as an approximate value.

The power consumption of the TQMa6x strongly depends on the application, the mode of operation and the operating system.

The following table shows details of the TQMa6x supply and power consumption.

Table 47: Power consumption TQMa6x

TQMa6x (CPU)	Mode of operation	Current @ 5 V	Power consumption	Remark
(All)	Power-Off	300 µA	~ 1.5 mW	–
TQMa6S (i.MX6Solo)	U-Boot prompt	146 mA	~ 730 mW	–
	Linux prompt	184 mA	~ 920 mW	–
	Linux: 100 % CPU load	380 mA	~ 1,900 mW	–
	Calculated peak	1.6 A	~ 7.96 W	Theoretical value
TQMa6U (i.MX6DualLite)	U-Boot prompt	–	–	(Not measured)
	Linux prompt	–	–	(Not measured)
	Linux: 100 % CPU load	–	–	(Not measured)
	Calculated peak	2.25 A	~ 11.26 W	Theoretical value
TQMa6D (i.MX6Dual)	U-Boot prompt	–	–	(Not measured)
	Linux prompt	–	–	(Not measured)
	Linux: 100 % CPU load	–	–	(Not measured)
	Calculated peak	2.22 A	~ 11.11 W	Theoretical value
TQMa6Q (i.MX6Quad)	U-Boot prompt	205 mA	~ 1,025 mW	–
	Linux prompt	245 mA	~ 1,225 mW	–
	Linux: 100 % CPU load	830 mA	~ 4,150 mW	–
	Calculated peak	2.49 A	~ 12.45 W	Theoretical value
TQMa6DP (i.MX6DualPlus)	U-Boot prompt	232 mA	~ 1,160 mW	–
	Linux prompt	–	–	(Not measured)
	Linux: 100 % CPU load	680 mA	~ 3,400 mW	–
	Calculated peak	2.98 A	~ 14.90 W	Theoretical value
TQMa6QP (i.MX6QuadPlus)	U-Boot prompt	232 mA	~ 1,160 mW	–
	Linux prompt	–	–	(Not measured)
	Linux: 100 % CPU load	830 mA	~ 4,150 mW	–
	Calculated peak	3.36 A	~ 16.79 W	Theoretical value

3.2.7.4 Power-Up sequence TQMa6x / carrier board

The TQMa6x operates with 5 V; the 3.3 V I/O voltages of the i.MX6 signals are generated on the TQMa6x.

This leads to requirements for the carrier board design concerning the chronological characteristics of the voltages generated on the carrier board.

Note: Power-Up sequence on the carrier board

To ensure a correct Power-Up, the following sequence must be met on the carrier board:
The supply voltage of 5 V for the TQMa6x is present and the carrier board supply of 3.3 V is activated by TQMa6x pin VCC3V3MB_EN (X2-26).

The following block diagram shows how VCC3V3MB_EN controls the voltage regulator on a carrier board.

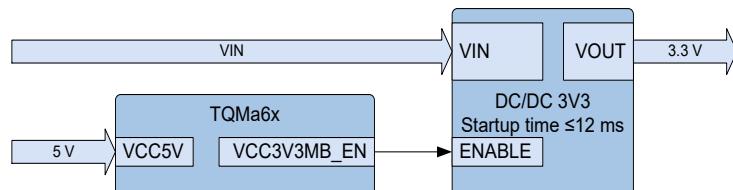


Figure 17: Block diagram power supply carrier board

No modifications need to be made to carrier boards developed for TQMa6x revision 01xx using pin VCC3V3_REF_OUT (X2-56) to activate the 3.3 V controller.

For re-designs or new designs, however, signal VCC3V3MB_EN (X2-26), available as of TQMa6x revision 02xx, is recommended.

Attention: Power-Up sequence

To avoid cross-supply and errors in the power-up sequence, no I/O pins may be driven by external components until the power-up sequence has been completed.
The end of the power-up sequence is indicated by a high level of signal VCC3V3MB_EN.

3.3 TQMa6x interface

3.3.1 Pin multiplexing

When using the i.MX6 signals, the multiple pin configurations by different i.MX6-internal function units must be taken note of. The pin assignment in Table 48 to Table 50 refers to the corresponding [BSP provided by TQ-Systems](#) in combination with the Starterkit MBa6x.

The electrical and pin characteristics are to be taken from the i.MX6 and PMIC documentation (1), (2), (3), (4), (5), (6), and (10).

Attention: Malfunction or destruction

Depending on the configuration, many of the i.MX6 pins can provide several different functions. Please take note of the information in the i.MX6 Reference Manuals (4), (5), and (6), concerning the configuration of these pins before integration or start-up of your carrier board / Starterkit. Improper programming by operating software can cause malfunctions, deterioration or destruction of the TQMa6x.

3.3.2 Pinout TQMa6x connectors

Table 48: Pinout connector X1

Ball	Dir.	Level	Group	Signal	Pin		Signal	Group	Level	Dir.	Ball
-	P	5 V	POWER	VCC5V	1	2	VCC5V	POWER	5 V	P	-
-	P	5 V	POWER	VCC5V	3	4	VCC5V	POWER	5 V	P	-
-	P	5 V	POWER	VCC5V	5	6	VCC5V	POWER	5 V	P	-
-	P	0 V	POWER	DGND	7	8	DGND	POWER	0 V	P	-
-	P	0 V	POWER	DGND	9	10	DGND	POWER	0 V	P	-
-	P	0 V	POWER	DGND	11	12	DGND	POWER	0 V	P	-
A18	I/O	3.3 V	GPIO	GPIO2_IO00	13	14	PCIE_TX_N	PCIE	- ¹⁶	O	A3
C17	I/O	3.3 V	GPIO	GPIO2_IO01	15	16	PCIE_TX_P	PCIE	- ¹⁶	O	B3
F16	I/O	3.3 V	GPIO	GPIO2_IO02	17	18	DGND	POWER	0 V	P	-
D17	I/O	3.3 V	GPIO	GPIO2_IO03	19	20	PCIE_RX_N	PCIE	- ¹⁶	I	B1
D18	I/O	3.3 V	GPIO	GPIO2_IO08	21	22	PCIE_RX_P	PCIE	- ¹⁶	I	B2
A20	I/O	3.3 V	GPIO	GPIO2_IO11	23	24	DGND	POWER	0 V	P	-
C15	I/O	3.3 V	GPIO	GPIO6_IO07	25	26	CLK1_N	XTAL	2.5 V	O	C7
A16	I/O	3.3 V	GPIO	GPIO6_IO08	27	28	CLK1_P	XTAL	2.5 V	O	D7
F15	I/O	3.3 V	GPIO	GPIO6_IO11	29	30	DGND	POWER	0 V	P	-
C16	I/O	3.3 V	GPIO	GPIO6_IO14	31	32	USB_H1_DP	USB	- ¹⁷	I/O	E10
B19	O	3.3 V	PWM	PWM3	33	34	USB_H1_DN	USB	- ¹⁷	I/O	F10
-	P	0 V	POWER	DGND	35	36	DGND	POWER	0 V	P	-
D10	P	5 V	POWER	USB_H1_VBUS	37	38	HDMI_CLK_N	HDMI	- ¹⁸	O	J5
T5	O	3.3 V	USB	USB_H1_PWR	39	40	HDMI_CLK_P	HDMI	- ¹⁸	O	J6
R7	I	3.3 V	USB	USB_H1_OC	41	42	DGND	POWER	0 V	P	-
E9	P	5 V	POWER	USB_OTG_VBUS	43	44	HDMI_D0_N	HDMI	- ¹⁸	O	K5
T4	I	3.3 V	USB	USB_OTG_ID	45	46	HDMI_D0_P	HDMI	- ¹⁸	O	K6
-	P	0 V	POWER	DGND	47	48	DGND	POWER	0 V	P	-
A6	I/O	- ¹⁷	USB	USB_OTG_DP	49	50	HDMI_D1_N	HDMI	- ¹⁸	O	J3
B6	I/O	- ¹⁷	USB	USB_OTG_DN	51	52	HDMI_D1_P	HDMI	- ¹⁸	O	J4
-	P	0 V	POWER	DGND	53	54	DGND	POWER	0 V	P	-
A14	I	- ¹⁹	SATA	SATA_RX_N	55	56	HDMI_D2_N	HDMI	- ¹⁸	O	K3
B14	I	- ¹⁹	SATA	SATA_RX_P	57	58	HDMI_D2_P	HDMI	- ¹⁸	O	K4
-	P	0 V	POWER	DGND	59	60	DGND	POWER	0 V	P	-
B12	O	- ¹⁹	SATA	SATA_TX_N	61	62	HDMI_DDC_SCL	HDMI	- ¹⁸	O	U5
A12	O	- ¹⁹	SATA	SATA_TX_P	63	64	HDMI_DDC_SDA	HDMI	- ¹⁸	I/O	T7
-	P	0 V	POWER	DGND	65	66	HDMI_HPD	HDMI	- ¹⁸	I	K1
C2	I	3.3 V	JTAG	JTAG_TRST#	67	68	BOOT_MODE0	CONFIG	3.0 V ²⁰	I _{PD}	C12
C3	I	3.3 V	JTAG	JTAG_TMS	69	70	BOOT_MODE1	CONFIG	3.0 V ²⁰	I _{PD}	F12
G5	I	3.3 V	JTAG	JTAG_TDI	71	72	GPIO7_IO12	GPIO	3.3 V	I/O	R1
G6	O	3.3 V	JTAG	JTAG_TDO	73	74	GPIO4_IO06	GPIO	3.3 V	I/O	W5
H6	I _{PD}	3.3 V	JTAG	JTAG_MOD	75	76	VSNVS_REF_OUT	POWER	3.0 V	P	-
H5	I	3.3 V	JTAG	JTAG_TCK	77	78	CCM_CLK01	CLK0	3.3 V	O	P4
-	P	0 V	POWER	DGND	79	80	DGND	POWER	0 V	P	-

16: See PCIe 1.1/2.0 Specification.

17: See USB 2.0 Specification.

18: See HDMI 1.4 Specification.

19: See Serial ATA 3.0 Specification.

20: Use VSNVS_REF_OUT as reference voltage.

3.3.2 Pinout TQMa6x connectors (continued)

Table 48: Pinout connector X1 (continued)

Ball	Dir.	Level	Group	Signal	Pin		Signal	Group	Level	Dir.	Ball
L1	I	3.3 V	UART	UART4_RX	81	82	GPIO5_IO18	GPIO	3.3 V	I/O	P1
M2	O	3.3 V	UART	UART4_TX	83	84	GPIO5_IO21	GPIO	3.3 V	I/O	N2
L4	I	3.3 V	UART	UART4_RTS#	85	86	I2C3_SCL	I2C	3.3 V	O _{PU}	R4
L3	O	3.3 V	UART	UART4_CTS#	87	88	I2C3_SDA	I2C	3.3 V	I/O _{PU}	T3
M5	I	3.3 V	UART	UART5_RX	89	90	CAN2_RX	CAN	3.3 V	I	V5
M4	O	3.3 V	UART	UART5_TX	91	92	CAN2_TX	CAN	3.3 V	O	T6
M6	I	3.3 V	UART	UART5_RTS#	93	94	CAN1_RX	CAN	3.3 V	I	W4
L6	O	3.3 V	UART	UART5_CTS#	95	96	CAN1_TX	CAN	3.3 V	O	W6
-	P	0 V	POWER	DGND	97	98	DGND	POWER	0 V	P	-
M1	I	3.3 V	AUDIO	AUD3_RXC	99	100	AUD3_TXC	AUDIO	3.3 V	O	N1
M3	I	3.3 V	AUDIO	AUD3_RXFS	101	102	AUD3_TXFS	AUDIO	3.3 V	O	N4
N3	I	3.3 V	AUDIO	AUD3_RXD	103	104	AUD3_TXD	AUDIO	3.3 V	O	P2
F17	O	3.3 V	PWM	PWM4	105	106	GPIO1_IO21	GPIO	3.3 V	I/O	F18
N5	O	3.3 V	I2C	I2C1_SCL	107	108	SPI5_MISO	SPI	3.3 V	I	A21
N6	I/O	3.3 V	I2C	I2C1_SDA	109	110	SPI5_MOSI	SPI	3.3 V	O	B21
P3	I/O	3.3 V	GPIO	GPIO5_IO20	111	112	SPI5_SS0#	SPI	3.3 V	O	C20
P5	I/O	3.3 V	GPIO	GPIO4_IO05	113	114	SPI5_SCK	SPI	3.3 V	O	D20
-	P	0 V	POWER	DGND	115	116	DGND	POWER	0 V	P	-
Y1	O	-21	LVDS	LVDS1_TX0_N	117	118	LVDS0_TX0_N	LVDS	-21	O	U2
Y2	O	-21	LVDS	LVDS1_TX0_P	119	120	LVDS0_TX0_P	LVDS	-21	O	U1
-	P	0 V	POWER	DGND	121	122	DGND	POWER	0 V	P	-
AA2	O	-21	LVDS	LVDS1_TX1_N	123	124	LVDS0_TX1_N	LVDS	-21	O	U4
AA1	O	-21	LVDS	LVDS1_TX1_P	125	126	LVDS0_TX1_P	LVDS	-21	O	U3
-	P	0 V	POWER	DGND	127	128	DGND	POWER	0 V	P	-
AB1	O	-21	LVDS	LVDS1_TX2_N	129	130	LVDS0_TX2_N	LVDS	-21	O	V2
AB2	O	-21	LVDS	LVDS1_TX2_P	131	132	LVDS0_TX2_P	LVDS	-21	O	V1
-	P	0 V	POWER	DGND	133	134	DGND	POWER	0 V	P	-
Y3	O	-21	LVDS	LVDS1_CLK_N	135	136	LVDS0_CLK_N	LVDS	-21	O	V4
Y4	O	-21	LVDS	LVDS1_CLK_P	137	138	LVDS0_CLK_P	LVDS	-21	O	V3
-	P	0 V	POWER	DGND	139	140	DGND	POWER	0 V	P	-
AA3	O	-21	LVDS	LVDS1_TX3_N	141	142	LVDS0_TX3_N	LVDS	-21	O	W2
AA4	O	-21	LVDS	LVDS1_TX3_P	143	144	LVDS0_TX3_P	LVDS	-21	O	W1
-	P	0 V	POWER	DGND	145	146	DGND	POWER	0 V	P	-
T2	O	3.3 V	PWM	PWM1	147	148	GPIO7_IO13	GPIO	3.3 V	I/O	P6
U20	I/O	ENET ²²	GPIO	GPIO1_IO30	149	150	GPIO7_IO11	GPIO	3.3 V	I/O	R2
W20	I/O	ENET ²²	GPIO	GPIO1_IO29	151	152	GPIO1_IO07	GPIO	3.3 V	I/O	R3
V21	I/O	ENET ²²	GPIO	GPIO1_IO28	153	154	GPIO1_IO26	GPIO	ENET ²²	I/O	W22
U21	I/O	ENET ²²	GPIO	GPIO1_IO25	155	156	SPDIF_OUT	AUDIO	ENET ²²	O	W21
R5	I/O	3.3 V	GPIO	GPIO1_IO08	157	158	SPDIF_IN	AUDIO	ENET ²²	I	W23
-	P	0 V	POWER	DGND	159	160	DGND	POWER	0 V	P	-

21: See LVDS Specification (ANSI EIA-644-A).

22: 2.5 V if NVCC_ENET_IN is connected to VCC2V5_RGMII_OUT. 3.3 V if NVCC_ENET_IN is connected to VCC3V3_REF_OUT.

3.3.2 Pinout TQMa6x connectors (continued)

Table 49: Pinout connector X2

Ball	Dir.	Level	Group	Signal	Pin		Signal	Group	Level	Dir.	Ball
-	P	0 V	POWER	DGND	1	2	DGND	POWER	0 V	P	-
A22	I/O	3.3 V	SD	SD2_DAT0	3	4	SD2_DAT1	SD	3.3 V	I/O	E20
A23	I/O	3.3 V	SD	SD2_DAT2	5	6	SD2_DAT3	SD	3.3 V	I/O	B22
A19	I/O	3.3 V	SD	SD2_DAT4	7	8	SD2_DAT5	SD	3.3 V	I/O	B18
E17	I/O	3.3 V	SD	SD2_DAT6	9	10	SD2_DAT7	SD	3.3 V	I/O	C18
T1	I	3.3 V	SD	SD2_WP	11	12	SD2_CMD	SD	3.3 V	I/O	F19
C21	O	3.3 V	SD	SD2_CLK	13	14	SD2_CD#	SD	3.3 V	I	R6
-	P	0 V	POWER	DGND	15	16	DGND	POWER	0 V	P	-
-	P	3.3 V	POWER	LICELL ²³	17	18	TQM_PWR_OFF#	CONFIG	5 V	I	-
-	I _{PU}	3.3 V	CONFIG	PMIC_PWRON	19	20	DNC	-	-	-	-
D12	I _{PU}	3.3 V	CONFIG	MX6_ONOFF	21	22	DNC	-	-	-	-
C11	I _{PU}	3.3 V	CONFIG	MX6_POR#	23	24	DNC	-	-	-	-
-	O _{OD}	3.3 V	CONFIG	RESET_OUT#	25	26	VCC3V3MB_EN	POWER	3.3 V	P	-
E18	I	3.3 V	UART	UART2_RX	27	28	UART2_RTS#	UART	3.3 V	I	C19
D19	O	3.3 V	UART	UART2_TX	29	30	UART2_CTS#	UART	3.3 V	O	B20
-	P	0 V	POWER	DGND	31	32	DGND	POWER	0 V	P	-
B25	I	2.5 V	RGMII	RGMII_RXC	33	34	RGMII_TXC	RGMII	2.5 V	O	D21
-	P	0 V	POWER	DGND	35	36	DGND	POWER	0 V	P	-
C24	I	2.5 V	RGMII	RGMII_RD0	37	38	RGMII_TD0	RGMII	2.5 V	O	C22
B23	I	2.5 V	RGMII	RGMII_RD1	39	40	RGMII_TD1	RGMII	2.5 V	O	F20
B24	I	2.5 V	RGMII	RGMII_RD2	41	42	RGMII_TD2	RGMII	2.5 V	O	E21
D23	I	2.5 V	RGMII	RGMII_RD3	43	44	RGMII_TD3	RGMII	2.5 V	O	A24
D22	I	2.5 V	RGMII	RGMII_RX_CTL	45	46	RGMII_TX_CTL	RGMII	2.5 V	O	C23
-	P	0 V	POWER	DGND	47	48	DGND	POWER	0 V	P	-
V20	O	ENET	MII	ENET_MDC ²⁴	49	50	ENET_REFCLK ²⁴	RGMII	ENET	I	V22
V23	I/O	ENET	MII	ENET_MDIO ²⁴	51	52	DGND	POWER	0 V	P	-
R19	P	ENET	POWER	NVCC_ENET_IN ²⁵	53	54	VCC2V5_RGMII_OUT	POWER	2.5 V	P	-
V6	I/O	3.3 V	GPIO	GPIO4_IO07	55	56	VCC3V3_REF_OUT	POWER	3.3 V	P	-
U7	I/O	3.3 V	GPIO	GPIO4_IO08	57	58	GPIO4_IO09	GPIO	3.3 V	I/O	U6
E16	I	3.3 V	UART	UART3_RX	59	60	WDOG1#	WDOG	3.3 V	O	E19
B17	O	3.3 V	UART	UART3_TX	61	62	DGND	POWER	0 V	P	-
F21	I	3.3 V	SPI	SPI1_MISO	63	64	SPI1_SCK	SPI	3.3 V	O	C25
G21	O	3.3 V	SPI	(SPI1_SS1#)/DNC ²⁶	65	66	SPI1_MOSI	SPI	3.3 V	O	D24
H20	I	3.3 V	USB	USB_OTG_OC#	67	68	GPIO3_IO20	GPIO	3.3 V	I/O	G20
D25	I/O	3.3 V	GPIO	GPIO3_IO23	69	70	USB_OTG_PWR	USB	3.3 V	O	E23
G22	O	3.3 V	SPI	SPI1_SS3#	71	72	SPI1_SS2#	SPI	3.3 V	O	F22
-	P	0 V	POWER	DGND	73	74	DGND	POWER	0 V	P	-
E25	I/O	3.3 V	GPIO	GPIO3_IO27	75	76	GPIO3_IO26	GPIO	3.3 V	I/O	E24
J19	I/O	3.3 V	GPIO	GPIO3_IO29	77	78	GPIO3_IO28	GPIO	3.3 V	I/O	G23
H21	I	3.3 V	UART	UART3_RTS#	79	80	UART3_CTS#	UART	3.3 V	O	J20

23: LICELL can be left open, if RTC backup or other functions of the SNVS domain are not required (see NXP documentation).

24: 2.5 V, if NVCC_ENET_IN is connected to VCC2V5_RGMII_OUT. 3.3 V, if NVCC_ENET_IN is connected to VCC3V3_REF_OUT.

25: 2.5 V, if connected to VCC2V5_RGMII_OUT on carrier board. 3.3 V, if connected to VCC3V3_REF_OUT on carrier board.

26: DNC, if SPI NOR flash is assembled.

3.3.2 Pinout TQMa6x connectors (continued)

Table 49: Pinout connector X2 (continued)

Ball	Dir.	Level	Group	Signal	Pin		Signal	Group	Level	Dir.	Ball
J24	I/O	3.3 V	GPIO	GPIO2_IO25	81	82	CCM_CLKO2	CCM	3.3 V	O	A17
J23	I/O	3.3 V	GPIO	GPIO2_IO24	83	84	GPIO2_IO23	GPIO	3.3 V	I/O	H24
F23	I	3.3 V ²⁷	BOOT	BOOT_CFG4_7	85	86	BOOT_CFG4_6	BOOT	3.3 V ²⁷	I	E22
-	P	0 V	POWER	DGND	87	88	DGND	POWER	0 V	P	-
K20	I	3.3 V ²⁷	BOOT	BOOT_CFG4_5	89	90	BOOT_CFG4_4	BOOT	3.3 V ²⁷	I	K23
K21	I	3.3 V ²⁷	BOOT	BOOT_CFG4_3	91	92	BOOT_CFG4_2	BOOT	3.3 V ²⁷	I	K22
M25	I	3.3 V ²⁷	BOOT	BOOT_CFG4_1	93	94	GPIO6_IO16	GPIO	3.3 V	I/O	D16
H19	I/O	3.3 V	HDMI	HDMI_CEC_LINE	95	96	BOOT_CFG4_0	BOOT	3.3 V ²⁷	I	F25
J21	I	3.3 V ²⁷	BOOT	BOOT_CFG3_7	97	98	BOOT_CFG3_6	BOOT	3.3 V ²⁷	I	F24
H23	I	3.3 V ²⁷	BOOT	BOOT_CFG3_5	99	100	BOOT_CFG3_4	BOOT	3.3 V ²⁷	I	H22
G25	I	3.3 V ²⁷	BOOT	BOOT_CFG3_3	101	102	BOOT_CFG3_2	BOOT	3.3 V ²⁷	I	J22
G24	I	3.3 V ²⁷	BOOT	BOOT_CFG3_1	103	104	BOOT_CFG3_0	BOOT	3.3 V ²⁷	I	H25
-	P	0 V	POWER	DGND	105	106	DGND	POWER	0 V	P	-
N24	I	3.3 V ²⁷	BOOT	BOOT_CFG2_7	107	108	BOOT_CFG2_6	BOOT	3.3 V ²⁷	I	N23
M23	I	3.3 V ²⁷	BOOT	BOOT_CFG2_5	109	110	BOOT_CFG2_4	BOOT	3.3 V ²⁷	I	M24
M20	I	3.3 V ²⁷	BOOT	BOOT_CFG2_3	111	112	BOOT_CFG2_2	BOOT	3.3 V ²⁷	I	M22
M21	I	3.3 V ²⁷	BOOT	BOOT_CFG2_1	113	114	BOOT_CFG2_0	BOOT	3.3 V ²⁷	I	L24
L25	I	3.3 V ²⁷	BOOT	BOOT_CFG1_7	115	116	BOOT_CFG1_6	BOOT	3.3 V ²⁷	I	K25
L23	I	3.3 V ²⁷	BOOT	BOOT_CFG1_5	117	118	BOOT_CFG1_4	BOOT	3.3 V ²⁷	I	L22
K24	I	3.3 V ²⁷	BOOT	BOOT_CFG1_3	119	120	BOOT_CFG1_2	BOOT	3.3 V ²⁷	I	L21
J25	I	3.3 V ²⁷	BOOT	BOOT_CFG1_1	121	122	BOOT_CFG1_0	BOOT	3.3 V ²⁷	I	L20
-	P	0 V	POWER	DGND	123	124	DGND	POWER	0 V	P	-
N19	O	3.3 V	DISP	DISP0_CLK	125	126	GPIO6_IO31	GPIO	3.3 V	I/O	N22
N21	O	3.3 V	DISP	DISP0_DRDY	127	128	DISP0_HSYNC	DISP	3.3 V	O	N25
P25	O	3.3 V	DISP	DISP0_CONTRAST	129	130	DISP0_VSYNC	DISP	3.3 V	O	N20
-	P	0 V	POWER	DGND	131	132	DGND	POWER	0 V	P	-
P24	O	3.3 V	DISP	DISP0_DAT0	133	134	DISP0_DAT1	DISP	3.3 V	O	P22
P23	O	3.3 V	DISP	DISP0_DAT2	135	136	DISP0_DAT3	DISP	3.3 V	O	P21
P20	O	3.3 V	DISP	DISP0_DAT4	137	138	DISP0_DAT5	DISP	3.3 V	O	R25
R23	O	3.3 V	DISP	DISP0_DAT6	139	140	DISP0_DAT7	DISP	3.3 V	O	R24
R22	O	3.3 V	DISP	DISP0_DAT8	141	142	DISP0_DAT9	DISP	3.3 V	O	T25
R21	O	3.3 V	DISP	DISP0_DAT10	143	144	DISP0_DAT11	DISP	3.3 V	O	T23
-	P	0 V	POWER	DGND	145	146	DGND	POWER	0 V	P	-
T24	O	3.3 V	DISP	DISP0_DAT12	147	148	DISP0_DAT13	DISP	3.3 V	O	R20
U25	O	3.3 V	DISP	DISP0_DAT14	149	150	DISP0_DAT15	DISP	3.3 V	O	T22
T21	O	3.3 V	DISP	DISP0_DAT16	151	152	DISP0_DAT17	DISP	3.3 V	O	U24
V25	O	3.3 V	DISP	DISP0_DAT18	153	154	DISP0_DAT19	DISP	3.3 V	O	U23
U22	O	3.3 V	DISP	DISP0_DAT20	155	156	DISP0_DAT21	DISP	3.3 V	O	T20
V24	O	3.3 V	DISP	DISP0_DAT22	157	158	DISP0_DAT23	DISP	3.3 V	O	W24
-	P	0 V	POWER	DGND	159	160	DGND	POWER	0 V	P	-

27: Use VCC3V3_REF_OUT as reference voltage for BOOT-CFG resistors.

3.3.2 Pinout TQMa6x connectors (continued)

Table 50: Pinout connector X3

Ball	Dir.	Level	Group	Signal	Pin		Signal	Group	Level	Dir.	Ball
-	P	0 V	POWER	DGND	1	2	DGND	POWER	0 V	P	-
F4	I	- 28	MIPI-CSI	CSI_CLK0_N	3	4	MLB_C_N	MLB	- 28	O	A11
F3	I	- 28	MIPI-CSI	CSI_CLK0_P	5	6	MLB_C_P	MLB	- 28	O	B11
-	P	0 V	POWER	DGND	7	8	DGND	POWER	0 V	P	-
E4	I	- 28	MIPI-CSI	CSI_D0_N	9	10	MLB_D_N	MLB	- 28	I/O	B10
E3	I	- 28	MIPI-CSI	CSI_D0_P	11	12	MLB_D_P	MLB	- 28	I/O	A10
-	P	0 V	POWER	DGND	13	14	DGND	POWER	0 V	P	-
D1	I	- 28	MIPI-CSI	CSI_D1_N	15	16	MLB_S_N	MLB	- 28	I/O	A9
D2	I	- 28	MIPI-CSI	CSI_D1_P	17	18	MLB_S_P	MLB	- 28	I/O	B9
-	P	0 V	POWER	DGND	19	20	DGND	POWER	0 V	P	-
E1	I	- 28	MIPI-CSI	CSI_D2_N	21	22	DSI_CLK0_N	MIPI-DSI	- 28	O	H3
E2	I	- 28	MIPI-CSI	CSI_D2_P	23	24	DSI_CLK0_P	MIPI-DSI	- 28	O	H4
-	P	0 V	POWER	DGND	25	26	DGND	POWER	0 V	P	-
F2	I	- 28	MIPI-CSI	CSI_D3_N	27	28	DSI_D0_N	MIPI-DSI	- 28	O	G2
F1	I	- 28	MIPI-CSI	CSI_D3_P	29	30	DSI_D0_P	MIPI-DSI	- 28	O	G1
-	P	0 V	POWER	DGND	31	32	DGND	POWER	0 V	P	-
C5	O	2.5 V	XTAL	CLK2_N	33	34	DSI_D1_N	MIPI-DSI	- 28	I	H2
D5	O	2.5 V	XTAL	CLK2_P	35	36	DSI_D1_P	MIPI-DSI	- 28	I	H1
-	P	0 V	POWER	DGND	37	38	DGND	POWER	0 V	P	-
E11	I	3.0 V ²⁹	CONFIG	TAMPER	39	40	SPI-NOR_WP#	CONFIG	3.3 V	I	-

3.3.3 Pinout differences connector X2, TQMa6x revision 02xx / revision 04xx

The following table shows the pinout differences at connector X2 between TQMa6x revision 02xx and TQMa6x revision 04xx:

Table 51: Pinout differences TQMa6x revision 02xx and TQMa6x revision 04xx

Module	Pin	Signal	Group	Level	Dir.
TQMa6x revision 02xx	X2-18	VCC8V25 OTP ³⁰	CONFIG	8.25 V	P
	X2-20	VCC3V3 OTP ³⁰	CONFIG	3.3 V	P
	X2-22	OTP_SCL ³⁰	CONFIG	3.3 V	I
	X2-24	OTP_SDA ³⁰	CONFIG	3.3 V	I/O
TQMa6x revision 04xx	X2-18	TQM_PWR_OFF#	CONFIG	5 V	I
	X2-20	DNC	-	-	-
	X2-22	DNC	-	-	-
	X2-24	DNC	-	-	-

28: See i.MX6 Data Sheets (1), (2), and (3).

29: Use VSNVS_REF_OUT as reference voltage.

30: Only for production. Do not connect.

4. MECHANICS

4.1 Connectors

The TQMa6x is connected to the carrier board with 360 pins on three connectors.

The following table shows details of the connector used.

Table 52: TQMa6x, connectors

Manufacturer	Part number	Remark
TE connectivity	40-pin: 5177985-1 160-pin: 5177985-8	<ul style="list-style-type: none"> • 0.8 mm pitch • Plating: Gold 0.2 µm

The TQMa6x is held in the mating connectors with a retention force of approximately 32 N (without X3 assembled) or approximately 36 N, with X3 assembled.

It is strongly recommended to use an extraction tool to remove the TQMa6x from the carrier board to avoid damaging the connectors of the TQMa6x or the connectors on the carrier board. See chapter 4.8 for further information.

The following table shows some suitable mating connectors for the carrier board.

Table 53: Carrier board mating connectors

Manufacturer	Part number	Remark	Stack height (X)	Diagram
TE connectivity	40-pin: 5177986-1 160-pin: 5177986-8	On MBa6x	5 mm	
	40-pin: 1-5177986-1 160-pin: 2-5179230-8	–	6 mm	
	40-pin: 2-5177986-1 160-pin: 5179030-8	–	7 mm	
	40-pin: 3-5177986-1 160-pin: 3-5177986-8	–	8 mm	

4.2 Dimensions

Figure 18: TQMa6x dimensions, side view

Table 54: TQMa6x, heights³¹

Dimension	Dual/Quad	Solo/DualLite	Remark
A	5.10 ± 0.07		Combination of 5177985-x (TQMa6x) and 5177986-x (MBa6x)
B	1.78 ± 0.18		PCB thickness
C	2.00 ± 0.16	1.37 ± 0.09	i.MX6 CPU
C1	2.15 maximum		Inductor (highest component)
D	3.68 ± 0.11		Free space under TQMa6x
E	8.88 ± 0.25	8.25 ± 0.22	Total height to i.MX6 CPU
E1	9.14 maximum		Total height to highest component

31: Statistical tolerance chain with Gaussian distribution: 99.7 % coverage.

4.2 Dimensions (continued)

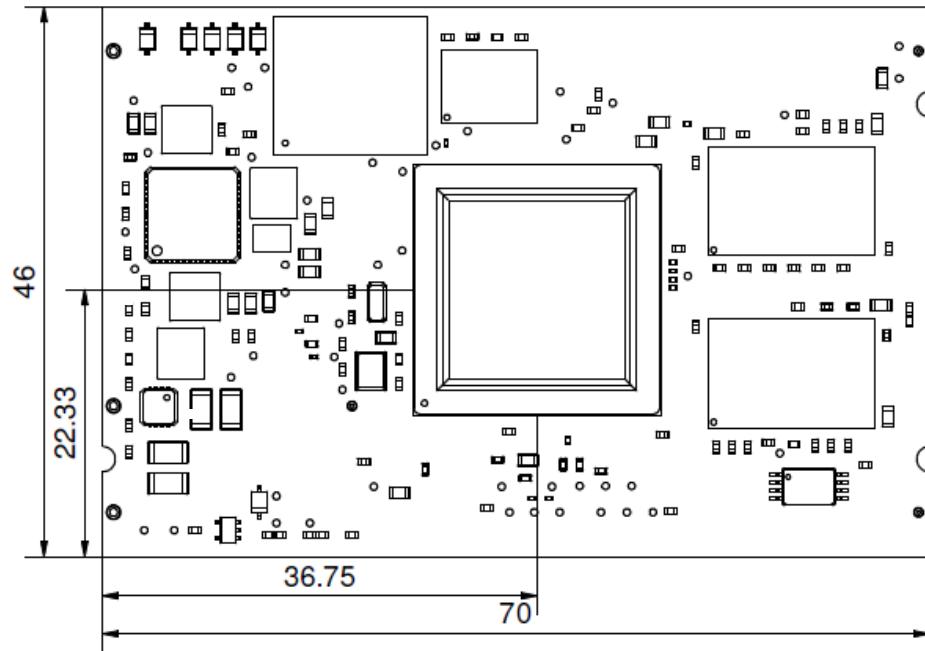


Figure 19: TQMa6x dimensions, top view

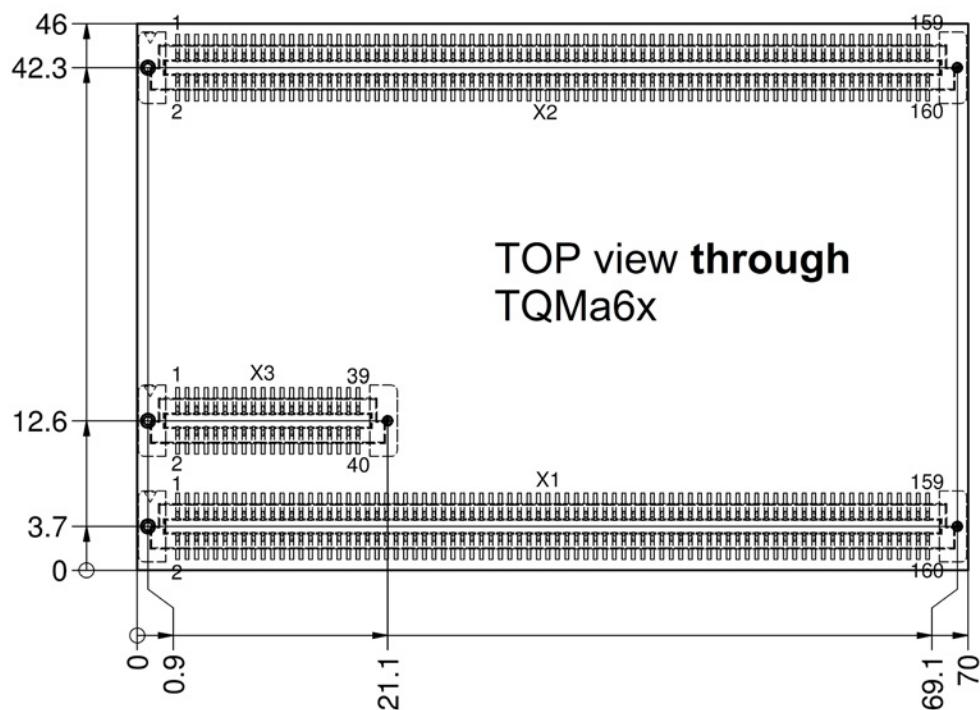


Figure 20: TQMa6x dimensions, top view **through** TQMa6x

4.3 Component placement

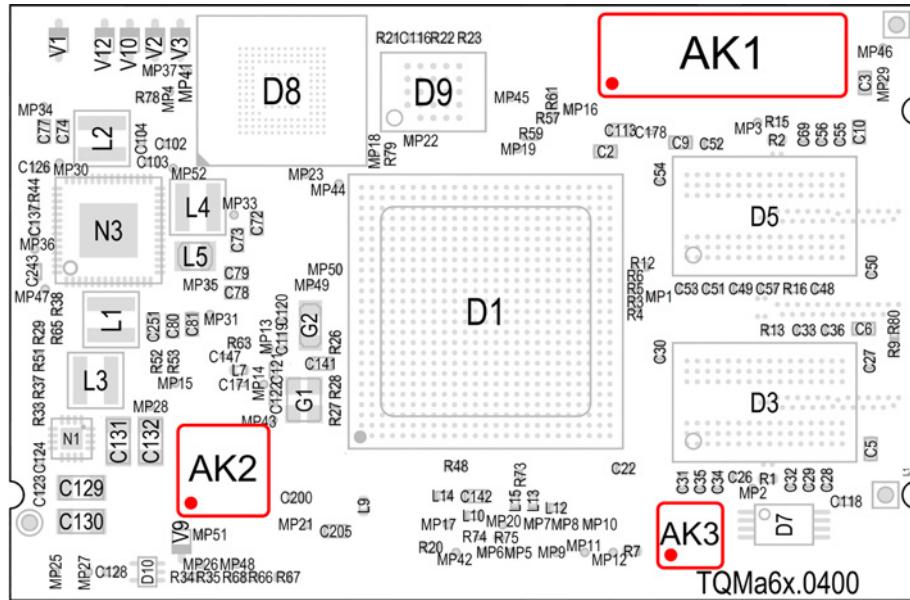


Figure 21: TQMa6x, component placement top

The labels on the TQMa6x show the following information:

Table 55: Labels on TQMa6x

Label	Content
AK1	TQMa6x version and revision, tests performed
AK2	MAC address
AK3	Serial number

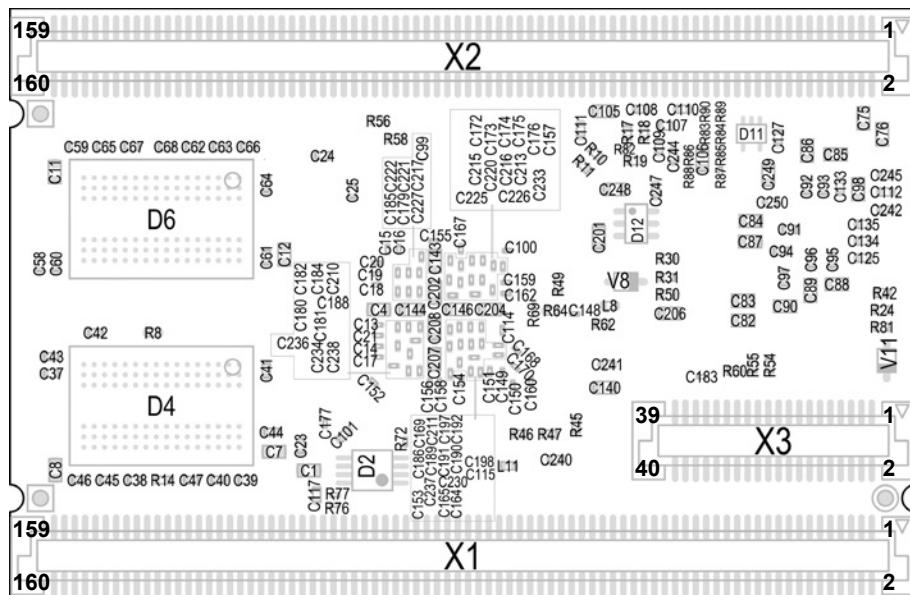


Figure 22: TQMa6x, component placement bottom

4.4 Adaptation to the environment

The TQMa6x has overall dimensions (length × width × height) of 70 × 46 mm × 7.1 mm³.

The TQMa6x has a maximum height above the carrier board of approximately 8.86 mm.

The TQMa6x weighs approximately 23 grams.

4.5 Protection against external effects

As an embedded module, the TQMa6x is not protected against dust, external impact and contact (IP00).

Adequate protection has to be guaranteed by the surrounding system.

4.6 Thermal management

To cool the TQMa6x, a maximum of approximately 4 watts must be dissipated, see Table 47 for peak currents.

The cooling solution must be able to dissipate this power peak; it will never occur permanently in normal operation.

The power dissipation originates primarily in the i.MX6, the DDR3L SDRAM and the PMIC. The power dissipation also depends on the software used and can vary according to the application. See NXP Application Notes (11), (12), (13), for further information.

When designing a cooling solution, a maximum contact force of 50 N may be applied to the i.MX6, see also NXP Application Note AN4871 (14).

Attention: Malfunction or destruction, TQMa6x heat dissipation

The i.MX6 belongs to a performance category in which a cooling system is essential. It is the user's sole responsibility to define a suitable heat sink (weight and mounting position) depending on the specific mode of operation (e.g., dependence on clock frequency, stack height, airflow, and software). Particularly the tolerance chain (PCB thickness, board warpage, BGA balls, BGA package, thermal pad, heatsink) as well as the maximum pressure on the i.MX6 must be taken into consideration when connecting the heat sink, see AN4871 (14). The i.MX6 is not necessarily the highest component. Inadequate cooling connections can lead to overheating of the TQMa6x and thus malfunction, deterioration or destruction.

4.7 Structural requirements

The TQMa6x is held in the mating connectors by the retention force of the pins (320 or 360). For high requirements with respect to vibration and shock firmness, an additional plastic retainer has to be provided in the final product to hold the TQMa6x in its position. Since no heavy and big components are used, no further requirements are given.

4.8 Notes of treatment

To avoid damage caused by mechanical stress, the TQMa6x may only be extracted from the carrier board by using the extraction tool MOZIA6X that can also be obtained separately.

Attention: Note with respect to the component placement of the carrier board

2.5 mm should be kept free on the carrier board, on both long sides of the TQMa6x for the extraction tool MOZIA6X.

5. SOFTWARE

The TQMa6x is delivered with a preinstalled boot loader U-Boot. TQ-Systems GmbH [provides a Board Support Package \(BSP\)](#), which is tailored for the combination of TQMa6x plus MBa6x.

The boot loader U-Boot provides TQMa6x-specific as well as board-specific settings, e.g.:

- CPU configuration
- PMIC configuration
- RAM configuration and timing
- eMMC configuration
- Pin multiplexing
- Clocks
- Pin configuration
- Driver strengths

These settings have to be adapted for other bootloaders. More information can be found in the [TQMa6x Support Wiki](#).

6. SAFETY REQUIREMENTS AND PROTECTIVE REGULATIONS

6.1 EMC

The TQMa6x was developed according to the requirements of electromagnetic compatibility (EMC). Depending on the target system, anti-interference measures may still be necessary to guarantee the adherence to the limits for the overall system.

Following measures are recommended:

- Robust ground planes (adequate ground planes) on the printed circuit board
- A sufficient number of blocking capacitors in all supply voltages
- Fast or permanent clocked lines (e.g., clock) should be kept short; avoid interference of other signals by distance and / or shielding. Take note of not only the frequency, but also the signal rise times
- Filtering of all signals, which can be connected externally (also "slow signals" and DC can radiate RF indirectly)

Since the TQMa6x is used on an application-specific carrier board, EMC or ESD tests only make sense for the whole device.

6.2 ESD

In order to avoid interspersion on the signal path from the input to the protection circuit in the system, the protection against electrostatic discharge should be arranged directly at the inputs of a system. As these measures always have to be implemented on the carrier board, no special preventive measures were planned on the TQMa6x.

Following measures are recommended for a carrier board:

• Generally applicable:	Shielding of inputs (shielding connected well to ground / housing on both ends)
• Supply voltages:	Suppressor diodes
• Slow signals:	RC filtering, Zener diodes
• Fast signals:	Protection components, e.g., suppressor diode arrays

6.3 Operational safety and personal security

Due to the occurring voltages (≤ 5 V DC), tests with respect to the operational and personal safety have not been carried out.

6.4 Cyber Security

A Threat Analysis and Risk Assessment (TARA) must always be performed by the customer for their individual end application, as the TQMa6x is only a sub-component of an overall system.

6.5 Export Control and Sanctions Compliance

The customer is responsible for ensuring that the product purchased from TQ is not subject to any national or international export/import restrictions. If any part of the purchased product or the product itself is subject to said restrictions, the customer must procure the required export/import licenses at its own expense. In the case of breaches of export or import limitations, the customer indemnifies TQ against all liability and accountability in the external relationship, irrespective of the legal grounds. If there is a transgression or violation, the customer will also be held accountable for any losses, damages or fines sustained by TQ. TQ is not liable for any delivery delays due to national or international export restrictions or for the inability to make a delivery as a result of those restrictions. Any compensation or damages will not be provided by TQ in such instances.

The classification according to the European Foreign Trade Regulations (export list number of Reg. No. 2021/821 for dual-use-goods) as well as the classification according to the U.S. Export Administration Regulations in case of US products (ECCN according to the U.S. Commerce Control List) are stated on TQ's invoices or can be requested at any time. Also listed is the Commodity code (HS) in accordance with the current commodity classification for foreign trade statistics as well as the country of origin of the goods requested/ordered.

6.6 Warranty

TQ-Systems GmbH warrants that the product, when used in accordance with the contract, fulfills the respective contractually agreed specifications and functionalities and corresponds to the recognized state of the art.

The warranty is limited to material, manufacturing and processing defects. The manufacturer's liability is void in the following cases:

- Original parts have been replaced by non-original parts.
- Improper installation, commissioning or repairs.
- Improper installation, commissioning or repair due to lack of special equipment.
- Incorrect operation
- Improper handling
- Use of force
- Normal wear and tear

6.7 Climatic and operational conditions

The operating temperature range strongly depends on the installation situation (heat dissipation by heat conduction and convection); hence, no fixed value can be given for the TQMa6x.

Detailed information regarding the thermal characteristics of the i.MX6 is to be taken from the NXP Data Sheets (1), (2), and (3).

In general, a reliable operation is given when following conditions are met:

Table 56: Climate and operational conditions –25 °C to +85 °C

Parameter	Range	Remark
Chip temperature i.MX6	–40 °C to +105 °C	Typical max. +90 °C ³²
Temperature range i.MX6	–40 °C to +85 °C	–
Chip temperature PMIC	–40 °C to +125 °C	–
Ambient temperature PMIC	–40 °C to +85 °C	–
Case temperature DDR3L SDRAM	–40 °C to +95 °C	–
Case temperature other ICs	–25 °C to +85 °C	–
Storage temperature TQMa6x	–40 °C to +85 °C	–
Relative humidity (operating / storage)	10 % to 90 %	Not condensing

Table 57: Climate and operational conditions –40 °C to +85 °C

Parameter	Range	Remark
Chip temperature i.MX6	–40 °C to +105 °C	Typical max. +90 °C ³²
Ambient temperature i.MX6	–40 °C to +85 °C	–
Chip temperature PMIC	–40 °C to +125 °C	–
Ambient temperature PMIC	–40 °C to +85 °C	–
Case temperature DDR3L SDRAM	–40 °C to +95 °C	–
Case temperature other ICs	–40 °C to +85 °C	–
Storage temperature TQMa6x	–40 °C to +85 °C	–
Relative humidity (operating / storage)	10 % to 90 %	Not condensing

32: With the QuadPlus CPU, a very good thermal connection must be ensured.

6.8 Shock and Vibration

Table 58: Shock resistance

Parameter	Details
Shock	According to DIN EN 60068-2-27
Shock form	Half sine
Acceleration	30 g
Residence time	10 msec
Number of shocks	3 shocks per direction
Excitation axes	6X, 6Y, 6Z

Table 59: Vibration resistance

Parameter	Details
Oscillation, sinusoidal	According to DIN EN 60068-2-6
Frequency ranges	2 ~ 9 Hz, 9 ~ 200 Hz, 200 ~ 500 Hz
Wobble rate	1.0 octaves / min
Excitation axes	X – Y – Z axis
Acceleration	2 Hz to 9 Hz: 3.5 m/s^2 9 Hz to 200 Hz: 10 m/s^2 200 Hz to 500 Hz: 15 m/s^2

6.9 Reliability and service life

The calculated MTBF of the TQMa6x is 1,153,000 h @ +40 °C ambient temperature, Ground, Benign.

The TQMa6x is designed to be insensitive to shock and vibration.

High quality industrial grade connectors are assembled on the TQMa6x.

Detailed information concerning the service life of the i.MX6 under different operational conditions is to be taken from the NXP Application Notes (15), (16).

6.10 Environmental protection

6.10.1 RoHS

The TQMa6x is manufactured RoHS compliant. All components, assemblies and soldering processes are RoHS compliant.

6.10.2 WEEE®

The final distributor is responsible for compliance with the WEEE® regulation.

Within the scope of the technical possibilities, the TQMa6x was designed to be recyclable and easy to repair.

6.10.3 REACH®

The EU-chemical regulation 1907/2006 (REACH® regulation) stands for registration, evaluation, certification and restriction of substances SVHC (Substances of very high concern, e.g., carcinogen, mutagen and/or persistent, bio accumulative and toxic). Within the scope of this juridical liability, TQ-Systems GmbH meets the information duty within the supply chain with regard to the SVHC substances, insofar as suppliers inform TQ-Systems GmbH accordingly.

6.10.4 EuP

The Ecodesign Directive, also Energy using Products (EuP), is applicable to products for the end user with an annual quantity >200,000. The TQMa6x must therefore always be seen in conjunction with the complete device.

The available standby and sleep modes of the components on the TQMa6x enable compliance with EuP requirements for the TQMa6x.

6.10.5 Statement on California Proposition 65

California Proposition 65, formerly known as the Safe Drinking Water and Toxic Enforcement Act of 1986, was enacted as a ballot initiative in November 1986. The proposition helps protect the state's drinking water sources from contamination by approximately 1,000 chemicals known to cause cancer, birth defects, or other reproductive harm ("Proposition 65 Substances") and requires businesses to inform Californians about exposure to Proposition 65 Substances.

The TQ device or product is not designed or manufactured or distributed as consumer product or for any contact with end-consumers. Consumer products are defined as products intended for a consumer's personal use, consumption, or enjoyment. Therefore, our products or devices are not subject to this regulation and no warning label is required on the assembly.

Individual components of the assembly may contain substances that may require a warning under California Proposition 65. However, it should be noted that the Intended Use of our products will not result in the release of these substances or direct human contact with these substances. Therefore you must take care through your product design that consumers cannot touch the product at all and specify that issue in your own product related documentation.

TQ reserves the right to update and modify this notice as it deems necessary or appropriate.

6.10.6 Battery

No batteries are assembled on the TQMa6x.

6.10.7 Packaging

The TQMa6x is delivered in reusable packaging.

6.10.8 Other entries

By environmentally friendly processes, production equipment and products, we contribute to the protection of our environment. To be able to reuse the TQMa6x, it is produced in such a way (a modular construction) that it can be easily repaired and disassembled. The energy consumption of the TQMa6x is minimised by suitable measures.

Because currently there is still no technical equivalent alternative for printed circuit boards with bromine-containing flame protection (FR-4 material), such printed circuit boards are still used. No use of PCB containing capacitors and transformers (polychlorinated biphenyls).

These points are an essential part of the following laws:

- The law to encourage the circular flow economy and assurance of the environmentally acceptable removal of waste as at 27.9.94
(Source of information: BGBl I 1994, 2705)
- Regulation with respect to the utilization and proof of removal as at 1.9.96
(Source of information: BGBl I 1996, 1382, (1997, 2860))
- Regulation with respect to the avoidance and utilization of packaging waste as at 21.8.98
(Source of information: BGBl I 1998, 2379)
- Regulation with respect to the European Waste Directory as at 1.12.01
(Source of information: BGBl I 2001, 3379)

This information is to be seen as notes. Tests or certifications were not carried out in this respect.

7. APPENDIX

7.1 Acronyms and definitions

The following acronyms and abbreviations are used in this document.

Table 60: Acronyms

Acronym	Meaning
ADC	Analog/Digital Converter
ANSI	American National Standards Institute
ARM®	Advanced RISC Machine
ASCII	American Standard Code for Information Interchange
ATA	Advanced Technology Attachment
AXI	Advanced eXtensible Interface Bus
BGA	Ball Grid Array
BIOS	Basic Input/Output System
BSP	Board Support Package
CAN	Controller Area Network
CCM	Clock Control Module
CPU	Central Processing Unit
CSI	Camera Serial Interface / Camera Sensor Interface
CSPI	Configurable SPI
DDC	Display Data Channel
DDR	Double Data Rate
DDR3L	DDR3 Low Voltage
DNC	Do Not Connect
DSI	Display Serial Interface
ECSPI	Enhanced Configurable SPI
EEPROM	Electrically Erasable Programmable Read-only Memory
EIA	Electronic Industries Alliance
EIM	External Interface Module
EMC	Electro-Magnetic Compatibility
eMMC	embedded Multi-Media Card
EPIT	Enhanced Periodic Interrupt Timer
ESAI	Enhanced Serial Audio Interface
ESD	Electro-Static Discharge
EuP	Energy using Products
FLEXCAN	Flexible CAN
FR-4	Flame Retardant 4
GbE	Gigabit Ethernet
GPIO	General Purpose Input/Output
GPMI	General Purpose Media Interface
GPT	General Purpose Timer
HDMI	High Definition Multimedia Interface
HPD	Hot Plug Detection
HRCW	Hard Reset Configuration Word
HSI	High-speed Synchronous serial Interface
HW	Hardware
I/O	Input/Output
I/OPU	Input/Output with Pull-Up
I ² C	Inter-Integrated Circuit
I ² S	Inter-IC Sound
IEEE®	Institute of Electrical and Electronics Engineers
iiPD	Input with internal Pull-Down
IP	Ingress Protection
IPD	Input with Pull-Down
IPU	Input with Pull-Up
JTAG®	Joint Test Action Group
KPP	Keypad Port
LDB	LVDS Display Bridge
LVDS	Low Voltage Differential Signalling

7.1 Acronyms and definitions (continued)

Table 60: Acronyms (continued)

Acronym	Meaning
MAC	Media Access Control
MII	Media Independent Interface
MIPI	Mobile Industry Processor Interface
MLB	Media Local Bus
MMC	Multimedia Card
MMDC	Multi-Mode DDR Controller
MMU	Memory Management Unit
MOZI	Module extractor (Modulzieher)
MTBF	Mean (operating) Time Between Failures
n/a	Not Applicable
NAND	Not-And
NOR	Not-Or
OCOTP	On-Chip OTP
OD	Open-Drain
OOD	Output Open-Drain
OP	Overwrite Protect
OPU	Output with Pull-Up
OTG	On-The-Go
OTP	One-Time Programmable
PCB	Printed Circuit Board
PCI	Peripheral Component Interconnect
PCIe	PCI Express
PCMCIA	People Can't Memorize Computer Industry Acronyms
PD	Pull-Down
PMIC	Power Management Integrated Circuit
POR	Power-on Reset
PU	Pull-Up
PWM	Pulse-Width Modulation
RAM	Random Access Memory
REACH®	Registration, Evaluation, Authorisation (and restriction of) Chemicals
RF	Radio Frequency
RGB	Red Green Blue
RGMII	Reduced Gigabit Media Independent Interface
RMII	Reduced Media Independent Interface
RoHS	Restriction of (the use of certain) Hazardous Substances
ROM	Read-Only Memory
RTC	Real-Time Clock
S/PDIF	Sony/Philips Digital Interface
SATA	Serial ATA
SD	Secure Digital
SDHC	SD Host Controller
SDIO	Secure Digital Input/Output
SDIO / MMC / SD	Secure Digital Input/Output / Multimedia Card / Secure Digital
SDRAM	Synchronous Dynamic Random Access Memory
SDXC	SD eXtended Capacity
SJC	System JTAG Controller
SNVS	Secure Non-Volatile Storage
SPI	Serial Peripheral Interface
SSI	Synchronous Serial Interface
SVHC	Substances of Very High Concern
SW	Software
UART	Universal Asynchronous Receiver/Transmitter
UM	User's Manual
USB	Universal Serial Bus
USB-OTG	USB On-The-Go
uSDHC	Ultra-Secured Digital Host Controller
VSNVS	Voltage (for) Secure Non-Volatile Storage
WDOG	Watchdog
WEEE®	Waste Electrical and Electronic Equipment
WP	Write-Protect

7.2 References

Table 61: Further applicable documents

No.	Name	Rev., Date	Company
(1)	IMX6SDLIEC, i.MX6 Solo / DualLite Applications Processors Data Sheet	Revision 5, 06/2015	NXP
(2)	IMX6DQIEC, i.MX6 Dual / Quad Applications Processors Data Sheet	Revision 4, 07/2015	NXP
(3)	IMX6DQPIEC, i.MX6 DualPlus / QuadPlus Applications Processors Data Sheet	Revision 2, 09/2017	NXP
(4)	IMX6SDLRM, i.MX6 Solo / DualLite Applications Processor Reference Manual	Revision 2, 04/2015	NXP
(5)	IMX6DQRM, i.MX6 Dual / Quad Applications Processor Reference Manual	Revision 3, 07/2015	NXP
(6)	IMX6DQPRM i.MX6 DualPlus/6QuadPlus Applications Processor Reference Manual	Revision 1, 09/2017	NXP
(7)	IMX6DQCCE, Chip Errata for the i.MX6 Dual / Quad	Revision 5, 06/2015	NXP
(8)	IMX6SDLCE, Chip Errata for the i.MX6 Solo / DualLite	Revision 5, 12/2014	NXP
(9)	IMX6DQ6SDLHDG, Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo	Revision 1, 06/2013	NXP
(10)	MMPF0100, 14 Channel Configurable Power Management Integrated Circuit	Revision 11.0, 08/2015	NXP
(11)	AN4509, i.MX6 Dual / Quad Power Consumption Measurement	Revision 0, 09/2012	NXP
(12)	AN4576, i.MX6 DualLite Power Consumption Measurement	Revision 1, 03/2013	NXP
(13)	AN4579, i.MX6 Series Thermal Management Guidelines	Revision 0, 11/2012	NXP
(14)	AN4871, Application Note Assembly Handling for Lidless FCBGA Packages	Revision 0, 02/2014	NXP
(15)	AN4724, Application Note i.MX6 Dual / Quad Product Usage Lifetime Estimates	Revision 2, 07/2014	NXP
(16)	AN4725, Application Note i.MX6 Solo / DualLite Product Usage Lifetime Estimates	Revision 1, 12/2014	NXP
(17)	MBa6x User's Manual	– current –	TQ-Systems
(18)	TQMa6x Support-Wiki	– current –	TQ-Systems
(19)	TQMa6x-MBa6x_TechNote	– current –	TQ-Systems

Technology in Quality

TQ-Systems GmbH
Mühlstraße 2 | Gut Delling | 82229 Seefeld
Info@TQ-Group | TQ-Group